Molecular Medicine

, Volume 13, Issue 9–10, pp 527–541 | Cite as

DNA Microarrays: a Powerful Genomic Tool for Biomedical and Clinical Research

  • Victor Trevino
  • Francesco Falciani
  • Hugo A. Barrera-Saldaña
Research Article


Among the many benefits of the Human Genome Project are new and powerful tools such as the genome-wide hybridization devices referred to as microarrays. Initially designed to measure gene transcriptional levels, microarray technologies are now used for comparing other genome features among individuals and their tissues and cells. Results provide valuable information on disease subcategories, disease prognosis, and treatment outcome. Likewise, they reveal differences in genetic makeup, regulatory mechanisms, and subtle variations and move us closer to the era of personalized medicine. To understand this powerful tool, its versatility, and how dramatically it is changing the molecular approach to biomedical and clinical research, this review describes the technology, its applications, a didactic step-by-step review of a typical microarray protocol, and a real experiment. Finally, it calls the attention of the medical community to the importance of integrating multidisciplinary teams to take advantage of this technology and its expanding applications that, in a slide, reveals our genetic inheritance and destiny.



HABS thanks the Staff of the Microarray Technology EMBO-INER Advanced Practical Course for enjoyable course lessons, materials and results; Peter Davies, Nancy and Greg Shipley of UT Medical School for additional laboratory training; Albert Sasson for critical reading of the manuscript and the offices of the Dean of his school and of the President of his University for support. Victor Trevino thanks Darwin Trust of Edinburgh and CONACyT for his PhD scholarship, and ITESM for support.


  1. 1.
    Golub TR et al. (1999) Molecular classification of cancer: Class discovery and class prediction by gene expression monitoring. Science. 286:531–7.CrossRefGoogle Scholar
  2. 2.
    van’t Veer LJ et al. (2002) Gene expression profiling predicts clinical outcome of breast cancer. Nature. 415:530–6.CrossRefGoogle Scholar
  3. 3.
    Singh D et al. (2002) Gene expression correlates of clinical prostate cancer behavior. Cancer Cell. 1:203–9.CrossRefGoogle Scholar
  4. 4.
    Wang T et al. (2000) Identification of genes differentially over-expressed in lung squamous cell carcinoma using combination of cDNA subtraction and microarray analysis. Oncogene. 19: 1519–28.CrossRefGoogle Scholar
  5. 5.
    Alon U et al. (1999) Broad patterns of gene expression revealed by clustering analysis of tumor and normal colon tissues probed by oligonucleotide arrays. Proc. Natl Acad. Sci. U. S. A. 96: 6745–50.CrossRefGoogle Scholar
  6. 6.
    Ramaswamy S et al. (2001) Multiclass cancer diagnosis using tumor gene expression signatures. Proc. Natl Acad. Sci. U. S. A. 98:15149–54.CrossRefGoogle Scholar
  7. 7.
    Brachat A, Pierrat B, Brungger A, Heim J. (2000) Comparative microarray analysis of gene expression during apoptosis-induction by growth factor deprivation or protein kinase C inhibition. Oncogene. 19:5073–82.CrossRefGoogle Scholar
  8. 8.
    Bonner AE, Lemon WJ, You M. (2003) Gene expression signatures identify novel regulatory pathways during murine lung development: implications for lung tumorigenesis. J. Med. Gen. 40:408–17.CrossRefGoogle Scholar
  9. 9.
    Brachat A et al. (2002) A microarray-based, integrated approach to identify novel regulators of cancer drug response and apoptosis. Oncogene. 21:8361–71.CrossRefGoogle Scholar
  10. 10.
    Rhodes DR et al. (2004) Large-scale meta-analysis of cancer microarray data identifies common transcriptional profiles of neoplastic transformation and progression. Proc. Natl Acad. Sci. U. S. A. 101:9309–14.CrossRefGoogle Scholar
  11. 11.
    Cutler DJ et al. (2001) High-throughput variation detection and genotyping using microarrays. Genome Res. 11:1913–1925.CrossRefGoogle Scholar
  12. 12.
    Yan PS et al. (2001) Dissecting complex epigenetic alterations in breast cancer using CpG island microarrays. Cancer Res. 61: 8375–80.PubMedGoogle Scholar
  13. 13.
    Pollack JR, Perou CM, Alizadeh AA, et al. (1999) Genome-wide analysis of DNA copy-number changes using cDNA microarrays. Nat. Genet. 23:41–6.CrossRefGoogle Scholar
  14. 14.
    Relogio A et al. (2005) Alternative splicing microarrays reveal functional expression of neuron-specific regulators in Hodgkin lymphoma cells. J. Biol. Chem. 280: 4779–84.CrossRefGoogle Scholar
  15. 15.
    Wang D et al. (2002) Microarray-based detection and genotyping of viral pathogens. Proc. Natl Acad. Sci. U. S. A. 99:15687–92.CrossRefGoogle Scholar
  16. 16.
    Conejero-Goldberg C et al. (2005) Infectious pathogen detection arrays: viral detection in cell lines and postmortem brain tissue. Biotechniques. 39:741–51.CrossRefGoogle Scholar
  17. 17.
    Fan JB, Chee MS, Gunderson KL. (2006) Highly parallel genomic assays. Nat. Rev. Genet. 7: 632–44.CrossRefGoogle Scholar
  18. 18.
    Benjamini Y, Hochberg Y. (1995) Controlling the False Discovery Rate — a Practical and Powerful Approach to Multiple Testing. J. R. Stat. Soc. Ser. B. 57:289–300.Google Scholar
  19. 19.
    Storey JD, Tibshirani R. (2003) Statistical significance for genomewide studies. Proc. Natl Acad. Sci. U. S. A. 100:9440–5.CrossRefGoogle Scholar
  20. 20.
    Yue H et al. (2001) An evaluation of the performance of cDNA microarrays for detecting changes in global mRNA expression. Nucleic Acids Res. 29: E41–41.CrossRefGoogle Scholar
  21. 21.
    Mutch DM, Berger A, Mansourian R, Rytz A, Roberts MA. (2001) Microarray data analysis: a practical approach for selecting differentially expressed genes. Genome Biol. 2: PREPRINT0009.CrossRefGoogle Scholar
  22. 22.
    Kim SY, Lee JW, Sohn IS. (2006) Comparison of various statistical methods for identifying differential gene expression in replicated microarray data. Stat. Methods Med. Res. 15:3–20.CrossRefGoogle Scholar
  23. 23.
    Li LP, Weinberg CR, Darden TA, Pedersen LG. (2001) Gene selection for sample classification based on gene expression data: study of sensitivity to choice of parameters of the GA/KNN method. Bioinformatics. 17:1131–42.CrossRefGoogle Scholar
  24. 24.
    Ooi CH, Tan P. (2003) Genetic algorithms applied to multi-class prediction for the analysis of gene expression data. Bioinformatics. 19:37–44.CrossRefGoogle Scholar
  25. 25.
    Sha NJ et al. (2004) Bayesian variable selection in multinomial probit models to identify molecular signatures of disease stage. Biometrics 60:812–9.CrossRefGoogle Scholar
  26. 26.
    Trevino V, Falciani F. (2006) GALGO: an R package for multivariate variable selection using genetic algorithms. Bioinformatics. 22:1154–6.CrossRefGoogle Scholar
  27. 27.
    Tibshirani R, Hastie T, Narasimhan B, Chu G. (2002) Diagnosis of multiple cancer types by shrunken centroids of gene expression. Proc. Natl Acad. Sci. U. S. A. 99:6567–72.CrossRefGoogle Scholar
  28. 28.
    Getz G, Levine E, Domany E. (2000) Coupled two-way clustering analysis of gene microarray data. Proc. Natl Acad. Sci. U. S. A. 97:12079–84.CrossRefGoogle Scholar
  29. 29.
    Sheng Q, Moreau Y, Smet FD, Marchal K, Moor BD. (2005) Advances in Cluster Analysis of Microarray Data. In: Azuaje F, Dopazo J (eds.) Data analysis and visualization in genomics and proteomics. John Wiley, Hoboken, NJ, pp. 153–171.CrossRefGoogle Scholar
  30. 30.
    Vaquerizas JM et al. (2005) GEPAS, an experiment-oriented pipeline for the analysis of microarray gene expression data. Nucleic Acids Res. 33: W616–20.CrossRefGoogle Scholar
  31. 31.
    Saeed AI, Hagabati NK, Braisted JC, et al. (2006) TM4 microarray software suite. DNA Microarrays, Part B: Databases and Statistics 411:134–193.CrossRefGoogle Scholar
  32. 32.
    Grewal A, Conway A. (2000) Tools for Analyzing Microarray Expression Data. Journal of Lab Automation 5:62–4.CrossRefGoogle Scholar
  33. 33.
    Sturn A, Quackenbush J, Trajanoski Z. (2002) Genesis: cluster analysis of microarray data. Bioinformatics. 18:207–8.CrossRefGoogle Scholar
  34. 34.
    Eisen MB, Spellman PT, Brown PO, Botstein D. (1998) Cluster analysis and display of genome-wide expression patterns. Proc. Natl Acad. Sci. U. S. A. 95:14863–8.CrossRefGoogle Scholar
  35. 35.
    Rosenwald A, Wright G, Chan WC, et al. (2002) The use of molecular profiling to predict survival after chemotherapy for diffuse large-B-cell lymphoma. N. Engl. J. Med. 346:1937–47.CrossRefGoogle Scholar
  36. 36.
    Zhao HJ, Kim Y, Wang P, et al. (2005) Genome-wide characterization of gene expression variations and DNA copy number changes in prostate cancer cell lines. Prostate 63:187–197.CrossRefGoogle Scholar
  37. 37.
    Braude I et al. (2006) Large scale copy number variation (CNV) at 14q12 is associated with the presence of genomic abnormalities in neoplasia. BMC Genomics. 7:138.CrossRefGoogle Scholar
  38. 38.
    Bird AP. (1986) Cpg-Rich Islands and the Function of DNA-Methylation. Nature. 321:209–13.CrossRefGoogle Scholar
  39. 39.
    Henikoff S, Matzke MA. (1997) Exploring and explaining epigenetic effects. Trends Genet. 13:293–5.CrossRefGoogle Scholar
  40. 40.
    Laird PW. (2003) The power and the promise of DNA methylation markers. Nat. Rev. Cancer. 3: 253–66.CrossRefGoogle Scholar
  41. 41.
    Schumacher A, Kapranov P, Kaminsky Z, et al. (2006) Microarray-based DNA methylation profiling: technology and applications. Nucleic Acids Res. 34:528–42.CrossRefGoogle Scholar
  42. 42.
    Lodygin D, Epanchintsev A, Menssen A, Diebold J, Hermeking H. (2005) Functional epigenomics identifies genes frequently silenced in prostate cancer. Cancer Res. 65:4218–27.CrossRefGoogle Scholar
  43. 43.
    Gebhard C et al. (2006) Genome-wide profiling of CpG methylation identifies novel targets of aberrant hypermethylation in myeloid leukemia. Cancer Res. 66:6118–28.CrossRefGoogle Scholar
  44. 44.
    Shi H et al. (2006) Discovery of novel epigenetic markers in non-Hodgkin’s lymphoma. Carcinogenesis. 28:60–70.CrossRefGoogle Scholar
  45. 45.
    Zhang D et al. (2006) Microarray-based molecular margin methylation pattern analysis in colorectal carcinoma. Anal. Biochem. 355:117–24.CrossRefGoogle Scholar
  46. 46.
    Wei SH et al. (2006) Prognostic DNA methylation biomarkers in ovarian cancer. Clin. Cancer Res. 12:2788–94.CrossRefGoogle Scholar
  47. 47.
    Piotrowski A et al. (2006) Microarray-based survey of CpG islands identifies concurrent hyperand hypomethylation patterns in tissues derived from patients with breast cancer. Genes Chromosomes Cancer. 45:656–67.CrossRefGoogle Scholar
  48. 48.
    Syvanen AC. (2005) Toward genome-wide SNP genotyping. Nat. Genet. 37:S5–10.CrossRefGoogle Scholar
  49. 49.
    Teh MT et al. (2005) Genomewide single nucleotide polymorphism microarray mapping in basal cell carcinomas unveils uniparental disomy as a key somatic event. Cancer Res. 65: 8597–603.CrossRefGoogle Scholar
  50. 50.
    Hoque MO, Lee CC, Cairns P, Schoenberg M, Sidransky D. (2003) Genome-wide genetic characterization of bladder cancer: a comparison of high-density single-nucleotide polymorphism arrays and PCR-based microsatellite analysis. Cancer Res. 63:2216–22.PubMedGoogle Scholar
  51. 51.
    Dumur CI et al. (2003) Genome-wide detection of LOH in prostate cancer using human SNP microarray technology. Genomics. 81:260–9.CrossRefGoogle Scholar
  52. 52.
    Moreno-Rocha JC, Revol de Mendoza A, Barrera-Saldana HA. (1999) Genetic transcription in eukaryotes: from transcriptional factors to disease. Rev. Invest. Clin. 51:375–84.PubMedGoogle Scholar
  53. 53.
    Gardner L, Lee LA, Dang CV. (2002) c-myc Protooncogene. In: Bertino JR (ed.) Encyclopedia of Cancer. Academic Press, San Diego, Calif., pp. 555–561.CrossRefGoogle Scholar
  54. 54.
    Wu J, Smith LT, Plass C, Huang TH. (2006) ChIP-chip comes of age for genome-wide functional analysis. Cancer Res. 66:6899–902.CrossRefGoogle Scholar
  55. 55.
    Beyer A et al. (2006) Integrated assessment and prediction of transcription factor binding. PLoS Comput. Biol. 2:e70.CrossRefGoogle Scholar
  56. 56.
    Bolstad BM, Irizarry RA, Astrand M, Speed TP. (2003) A comparison of normalization methods for high density oligonucleotide array data based on variance and bias. Bioinformatics. 19:185–93.CrossRefGoogle Scholar
  57. 57.
    Barrera-Saldana HA, Robberson DL, Saunders GF. (1982) Transcriptional products of the human placental lactogen gene. J. Biol. Chem. 257: 12399–404.PubMedGoogle Scholar
  58. 58.
    Storey JD. (2002) A direct approach to false discovery rates. J. R. Stat. Soc. Ser. B. 64:479–98.CrossRefGoogle Scholar
  59. 59.
    Hulbert EM, Smink LJ, Adlem EC, et al. (2007) T1DBase: integration and presentation of complex data for type 1 diabetes research. Nucleic Acids Research 35:D742–D746.CrossRefGoogle Scholar
  60. 60.
    Su AI et al. (2002) Large-scale analysis of the human and mouse transcriptomes. Proc. Natl. Acad. Sci. U. S. A. 99:4465–70.CrossRefGoogle Scholar
  61. 61.
    Lash AE et al. (2000) SAGEmap: a public gene expression resource. Genome Res. 10:1051–60.CrossRefGoogle Scholar
  62. 62.
    Huminiecki L, Lloyd AT, Wolfe KH. (2003) Congruence of tissue expression profiles from Gene Expression Atlas, SAGEmap and TissueInfo databases. BMC Genomics. 4:31.CrossRefGoogle Scholar
  63. 63.
    Brazma A et al. (2001) Minimum information about a microarray experiment (MIAME)-toward standards for microarray data. Nat. Genet. 29: 365–71.CrossRefGoogle Scholar
  64. 64.
    Spellman PT et al. (2002) Design and implementation of microarray gene expression markup language (MAGE-ML). Genome Biol. 3: RESEARCH0046.CrossRefGoogle Scholar

Copyright information

© Feinstein Institute for Medical Research 2007

Authors and Affiliations

  • Victor Trevino
    • 1
    • 2
  • Francesco Falciani
    • 2
  • Hugo A. Barrera-Saldaña
    • 3
  1. 1.Instituto Tecnológico y de Estudios Superiores de MonterreyMonterreyMéxico
  2. 2.School of BiosciencesUniversity of BirminghamBirminghamUK
  3. 3.Departamento de Bioquímica, Facultad de Medicina de la Universidad Autónoma de Nuevo LeónLaboratorio de Genómica y Bioinformática del Unidad de Laboratorios de Ingeniería y Expresión GenéticaMonterreyMéxico

Personalised recommendations