Molecular Medicine

, Volume 13, Issue 1–2, pp 59–68 | Cite as

An Interferon Signature in the Peripheral Blood of Dermatomyositis Patients is Associated with Disease Activity

  • Emily C. Baechler
  • Jason W. Bauer
  • Catherine A. Slattery
  • Ward A. Ortmann
  • Karl J. Espe
  • Jill Novitzke
  • Steven R. Ytterberg
  • Peter K. Gregersen
  • Timothy W. Behrens
  • Ann M. Reed
Research Article


Recent studies have shown increased expression of interferon (IFN)-regulated genes in the peripheral blood cells of patients with systemic lupus erythematosus. A similar interferon signature has been observed in affected muscle tissue from patients with dermatomyositis (DM), but it has not yet been determined if this signature extends to the peripheral blood in DM. We performed global gene expression profiling of peripheral blood cells from adult and juvenile DM patients and healthy controls. Several interesting groups of genes were differentially expressed in DM, including genes with immune function, and others that function in muscle or are involved in mitochondrial/oxidative phosphorylation. Investigation of type I IFN-regulated transcripts revealed a striking interferon signature present in most DM patients studied. Levels of type I IFN-regulated proteins were also elevated in DM serum samples. Furthermore, both the transcript and serum protein IFN signatures were associated with disease activity. These data suggest that the IFN signature may be a useful marker for DM disease activity, and that sampling peripheral blood may be a more practical alternative to muscle biopsy for measuring this signature.



Funding was provided by the Minnesota Partnership for Biotechnology and Medical Genomics, and, in part, by grants and contracts from the National Institutes of Health. ECB was supported by NIH AR50938-01.

Supplementary material

10020_2007_1301059_MOESM1_ESM.pdf (203 kb)
An Interferon Signature in the Peripheral Blood of Dermatomyositis Patients is Associated with Disease Activity
10020_2007_1301059_MOESM2_ESM.pdf (31 kb)
Supplementary material, approximately 31.0 KB.


  1. 1.
    Mastaglia FL, Phillips BA. (2002) Idiopathic inflammatory myopathies: epidemiology, classification, and diagnostic criteria. Rheum. Dis. Clin. North. Am. 28:723–41.CrossRefGoogle Scholar
  2. 2.
    Reed AM. (2001) Myositis in children. Curr. Opin. Rheumatol. 13:428–33.CrossRefGoogle Scholar
  3. 3.
    O’Hanlon TP et al. (2005) Immunogenetic risk and protective factors for the idiopathic inflammatory myopathies: distinct HLA-A, -B, -Cw, -DRB1 and -DQA1 allelic profiles and motifs define clinicopathologic groups in caucasians. Medicine (Baltimore). 84:338–49.CrossRefGoogle Scholar
  4. 4.
    Christensen ML, Pachman LM, Schneiderman R, Patel DC, Friedman JM. (1986) Prevalence of Coxsackie B virus antibodies in patients with juvenile dermatomyositis. Arthritis Rheum. 29:1365–70.CrossRefGoogle Scholar
  5. 5.
    Greenberg SA et al. (2005) Interferon-alpha/betamediated innate immune mechanisms in dermatomyositis. Ann. Neurol. 57:664–78.Google Scholar
  6. 6.
    Greenberg SA et al. (2002) Molecular profiles of inflammatory myopathies. Neurology. 59:1170–82.CrossRefGoogle Scholar
  7. 7.
    Raju R, Dalakas MC. (2005) Gene expression profile in the muscles of patients with inflammatory myopathies: effect of therapy with IVIg and biological validation of clinically relevant genes. Brain. 128:1887–96.CrossRefGoogle Scholar
  8. 8.
    Tezak Z et al. (2002) Gene expression profiling in DQA1*0501+ children with untreated dermatomyositis: a novel model of pathogenesis. J. Immunol. 168:4154–63.CrossRefGoogle Scholar
  9. 9.
    Zhou X, Dimachkie MM, Xiong M, Tan FK, Arnett FC. (2004) cDNAmicroarrays reveal distinct gene expression clusters in idiopathic inflammatory myopathies. Med. Sci. Monit. 10:BR191–7.PubMedGoogle Scholar
  10. 10.
    Baechler EC, Gregersen PK, Behrens TW. (2004) The emerging role of interferon in human systemic lupus erythematosus. Curr. Opin. Immunol. 16:801–7.CrossRefGoogle Scholar
  11. 11.
    Ronnblom L, Eloranta ML, Alm GV. (2006) The type I interferon system in systemic lupus erythematosus. Arthritis Rheum. 54:408–20.CrossRefGoogle Scholar
  12. 12.
    Baechler EC et al. (2003) Interferon-inducible gene expression signature in peripheral blood cells of patients with severe lupus. Proc. Natl. Acad. Sci. U. S. A. 100:2610–5.CrossRefGoogle Scholar
  13. 13.
    Bennett L et al. (2003) Interferon and granulopoiesis signatures in systemic lupus erythematosus blood. J. Exp. Med. 197:711–23.CrossRefGoogle Scholar
  14. 14.
    Crow MK, Kirou KA, Wohlgemuth J. (2003) Microarray analysis of interferon-regulated genes in SLE. Autoimmunity. 36:481–90.CrossRefGoogle Scholar
  15. 15.
    Dall’era MC, Cardarelli PM, Preston BT, Witte A, Davis JC Jr. (2005) Type I interferon correlates with serological and clinical manifestations of SLE. Ann. Rheum. Dis. 64:1692–7.CrossRefGoogle Scholar
  16. 16.
    Kirou KA et al. (2005) Activation of the interferonalpha pathway identifies a subgroup of systemic lupus erythematosus patients with distinct serologic features and active disease. Arthritis Rheum. 52:1491–503.CrossRefGoogle Scholar
  17. 17.
    Peterson KS et al. (2004) Characterization of heterogeneity in the molecular pathogenesis of lupus nephritis from transcriptional profiles of laser-captured glomeruli. J. Clin. Invest. 113:1722–33.CrossRefGoogle Scholar
  18. 18.
    Farkas L, Beiske K, Lund-Johansen F, Brandtzaeg P, Jahnsen FL. (2001) Plasmacytoid dendritic cells (natural interferon alpha/beta-producing cells) accumulate in cutaneous lupus erythematosus lesions. Am. J. Pathol. 159:237–43.CrossRefGoogle Scholar
  19. 19.
    Blomberg S et al. (2001) Presence of cutaneous interferon-alpha producing cells in patients with systemic lupus erythematosus. Lupus. 10:484–90.CrossRefGoogle Scholar
  20. 20.
    Baechler EC et al. (2006) Gene expression profiling in human autoimmunity. Immunol. Rev. 210:120–37.CrossRefGoogle Scholar
  21. 21.
    Bohan A, Peter JB. (1975) Polymyositis and dermatomyositis (first of two parts). N. Engl. J. Med. 292:344–7.CrossRefGoogle Scholar
  22. 22.
    Bohan A, Peter JB. (1975) Polymyositis and dermatomyositis (second of two parts). N. Engl. J. Med. 292:403–7.CrossRefGoogle Scholar
  23. 23.
    Huber AM et al. (2004) Validation and clinical significance of the Childhood Myositis Assessment Scale for assessment of muscle function in the juvenile idiopathic inflammatory myopathies. Arthritis Rheum. 50:1595–603.CrossRefGoogle Scholar
  24. 24.
    Oddis CV et al. (2005) International consensus guidelines for trials of therapies in the idiopathic inflammatory myopathies. Arthritis Rheum. 52:2607–15.CrossRefGoogle Scholar
  25. 25.
    Petri M, Genovese M, Engle E, Hochberg M. (1991) Definition, incidence, and clinical description of flare in systemic lupus erythematosus. A prospective cohort study. Arthritis. Rheum. 34:937–44.CrossRefGoogle Scholar
  26. 26.
    Hochberg Y, Benjamini Y. (1990) More powerful procedures for multiple significance testing. Stat. Med. 9:811–8.CrossRefGoogle Scholar
  27. 27.
    Tusher V, Tibshirani R, Chu G. (2001) Significance analysis of microarrays applied to the ionizing radiation response. Proc. Natl. Acad. Sci. U. S. A. 98:5116–21.CrossRefGoogle Scholar
  28. 28.
    Eisen MB, Spellman PT, Brown PO, Botstein D. (1998) Cluster analysis and display of genomewide expression patterns. Proc. Natl. Acad. Sci. U. S. A. 95:14863–8.CrossRefGoogle Scholar
  29. 29.
    Batliwalla FM et al. (2005) Microarray analyses of peripheral blood cells identifies unique gene expression signature in psoriatic arthritis. Mol. Med. 11:21–9.CrossRefGoogle Scholar
  30. 30.
    Semprini S et al. (2002) Evidence for differential S100 gene over-expression in psoriatic patients from genetically heterogeneous pedigrees. Hum. Genet. 111:310–3.CrossRefGoogle Scholar
  31. 31.
    Batliwalla FM et al. (2005) Peripheral blood gene expression profiling in rheumatoid arthritis. Genes Immun. 6:388–97.CrossRefGoogle Scholar
  32. 32.
    Schulze zur Wiesch A et al. (2004) Myeloid related proteins MRP8/MRP14 may predict disease flares in juvenile idiopathic arthritis. Clin. Exp. Rheumatol. 22:368–73.Google Scholar
  33. 33.
    Bouma G, Lam-Tse WK, Wierenga-Wolf AF, Drexhage HA, Versnel MA. (2004) Increased serum levels of MRP-8/14 in type 1 diabetes induce an increased expression of CD11b and an enhanced adhesion of circulating monocytes to fibronectin. Diabetes. 53:1979–86.CrossRefGoogle Scholar
  34. 34.
    Kalled SL. (2005) The role of BAFF in immune function and implications for autoimmunity. Immunol. Rev. 204:43–54.CrossRefGoogle Scholar
  35. 35.
    Nelson GW et al. (2004) Cutting edge: heterozygote advantage in autoimmune disease: hierarchy of protection/susceptibility conferred by HLA and killer Ig-like receptor combinations in psoriatic arthritis. J. Immunol. 173:4273–6.CrossRefGoogle Scholar
  36. 36.
    van der Slik AR et al. (2003) KIR in type 1 diabetes: disparate distribution of activating and inhibitory natural killer cell receptors in patients versus HLA-matched control subjects. Diabetes. 52:2639–42.CrossRefGoogle Scholar
  37. 37.
    Massa M et al. (2002) Self epitopes shared between human skeletal myosin and Streptococcus pyogenes M5 protein are targets of immune responses in active juvenile dermatomyositis. Arthritis Rheum. 46:3015–25.CrossRefGoogle Scholar
  38. 38.
    Tews DS, Goebel HH. (1998) Cell death and oxidative damage in inflammatory myopathies. Clin. Immunol. Immunopathol. 87:240–7.CrossRefGoogle Scholar
  39. 39.
    Perl A, Gergely P Jr., Nagy G, Koncz A, Banki K. (2004) Mitochondrial hyperpolarization: a checkpoint of T-cell life, death and autoimmunity. Trends Immunol. 25: 360–7.CrossRefGoogle Scholar
  40. 40.
    Diebold SS, Kaisho T, Hemmi H, Akira S, Reis e Sousa C. (2004) Innate antiviral responses by means of TLR7-mediated recognition of single-stranded RNA. Science. 303:1529–31.CrossRefGoogle Scholar
  41. 41.
    Heil F et al. (2004) Species-specific recognition of single-stranded RNA via toll-like receptor 7 and 8. Science. 303:1526–9.CrossRefGoogle Scholar
  42. 42.
    Hemmi H et al. (2000) A Toll-like receptor recognizes bacterial DNA. Nature. 408:740–5.CrossRefGoogle Scholar
  43. 43.
    Bave U, Alm GV, Ronnblom L. (2000) The combination of apoptotic U937 cells and lupus IgG is a potent IFN-alpha inducer. J. Immunol. 165:3519–26.CrossRefGoogle Scholar
  44. 44.
    Lovgren T, Eloranta ML, Bave U, Alm GV, Ronnblom L. (2004) Induction of interferon-alpha production in plasmacytoid dendritic cells by immune complexes containing nucleic acid released by necrotic or late apoptotic cells and lupus IgG. Arthritis. Rheum. 50:1861–72.CrossRefGoogle Scholar
  45. 45.
    Graham R et al. (2006) A common haplotype of interferon regulatory factor 5 (IRF5) regulates splicing and expression and is associated with increased risk of systemic lupus erythematosus. Nat. Genet. 38:550–5.CrossRefGoogle Scholar
  46. 46.
    Sigurdsson S et al. (2005) Polymorphisms in the tyrosine kinase 2 and interferon regulatory factor 5 genes are associated with systemic lupus erythematosus. Am. J. Hum. Genet. 76:528–37.CrossRefGoogle Scholar

Copyright information

© Feinstein Institute for Medical Research 2007

Authors and Affiliations

  • Emily C. Baechler
    • 1
  • Jason W. Bauer
    • 1
  • Catherine A. Slattery
    • 1
  • Ward A. Ortmann
    • 1
  • Karl J. Espe
    • 1
  • Jill Novitzke
    • 1
  • Steven R. Ytterberg
    • 2
  • Peter K. Gregersen
    • 3
  • Timothy W. Behrens
    • 1
  • Ann M. Reed
    • 4
  1. 1.University of Minnesota Medical SchoolMinneapolisUSA
  2. 2.Division of Rheumatology, Departments of Medicine and PediatricsMayo Clinic and Medical SchoolRochesterUSA
  3. 3.The Feinstein Institute for Medical Research, North Shore Long Island Jewish Research InstituteManhassetUSA
  4. 4.Division of Rheumatology, Departments of Medicine and PediatricsE15 Rheumatology, Mayo Clinic and Medical SchoolRochesterUSA

Personalised recommendations