Molecular Medicine

, Volume 13, Issue 1–2, pp 105–111 | Cite as

SERCA2a, Phospholamban, Sarcolipin, and Ryanodine Receptors Gene Expression in Children with Congenital Heart Defects

  • Simona Vittorini
  • Simona Storti
  • Maria Serena Parri
  • Alfredo Giuseppe Cerillo
  • Aldo Clerico
Research Article


In animal models of conotruncal heart defects, an abnormal calcium sensitivity of the contractile apparatus and a depressed L-type calcium current have been described. Sarcoplasmic reticulum (SR) Ca2+ ATPase (SERCA) is a membrane protein that catalyzes the ATP-dependent transport of Ca2+ from the cytosol to the SR. The activity of SERCA is inhibited by phospholamban (PLN) and sarcolipin (SLN), and all these proteins participate in maintaining the normal intracellular calcium handling. Ryanodine receptors (RyRs) are the major SR calcium-release channels required for excitation-contraction coupling in skeletal and cardiac muscle. Our objective was to evaluate SERCA2a (i.e., the SERCA cardiac isoform), PLN, SLN, and RyR2 (i.e., the RyR isoform enriched in the heart) gene expression in myocardial tissue of patients affected by tetralogy of Fallot (TOF), a conotruncal heart defect. The gene expression of target genes was assessed semiquantitatively by RT-PCR using the calsequestrin (CASQ, a housekeeping gene) RNA as internal standard in the atrial myocardium of 23 pediatric patients undergoing surgical correction of TOF, in 10 age-matched patients with ventricular septal defect (VSD) and in 13 age-matched children with atrial septal defect (ASD). We observed a significantly lower expression of PLN and SLN in TOF patients, while there was no difference between the expression of SERCA2a and RyR2 in TOF and VSD. These data suggest a complex mechanism aimed to enhance the intracellular Ca2+ reserve in children affected by tetralogy of Fallot.


  1. 1.
    Srivastava D. (2002) Molecular and morphogenetic cardiac embryology: implications for congenital heart disease. In: Artman M, Mahony L; Teitel DF, editors. Neonatal Cardiology. McGraw-Hill Companies, New York, p. 1–17.Google Scholar
  2. 2.
    Bonnet D. (2003) Genetics of congenital heart disease. Arch. Ped. 10:635–9.CrossRefGoogle Scholar
  3. 3.
    Creazzo TL, Godt RE, Leatherbury L, Conway SJ, Kirby ML. (1998) Role of cardiac neural crest cells in cardiovascular development. Annu. Rev. Physiol. 60:267–86.CrossRefGoogle Scholar
  4. 4.
    Bonnet D. (2006) Epidemiology and genetics of congenital heart disease and cardiomyopathies in children. Rev. Prat. 56:599–604.PubMedGoogle Scholar
  5. 5.
    Hutson MR, Kirby ML. (2003) Neural crest and cardiovascular development: a 20-year perspective. Birth Defects Res. Com. 69:2–13.CrossRefGoogle Scholar
  6. 6.
    Nichols CA, Creazzo TL. (2005) L-type Ca2+ channel function in the avian embryonic heart after cardiac neural crest ablation. Am. J. Physiol. Heart Circ. Physiol. 288:H1173–8.CrossRefGoogle Scholar
  7. 7.
    Chelu MG, Danila CI, Gilman CP, Hamilton SL. (2004) Regulation of ryanodine receptors by FK506 binding proteins. TCM 14:227–34.PubMedGoogle Scholar
  8. 8.
    Asahi M, Nakayama H, Tada M, Otsu K. (2003) Regulation of sarco(endo)plasmic reticulum Ca2+ adenosine triphosphatase by phospholamban and sarcolipin: implication for cardiac hypertrophy and failure. TCM 13:152–7.PubMedGoogle Scholar
  9. 9.
    Pavlovic M, Schaller A, Pfammatter JP, Carrel T, Berdat P, Gallati S. (2005) Age-dependent suppression of SERCA2a mRNA in pediatric atrial myocardium. Biochem. Biophys. Res. Commun. 326:344–8.CrossRefGoogle Scholar
  10. 10.
    Rudolph AM. (2001) Congenital Diseases of the Heart: Clinical-Physiological Considerations. Futura Publishing Company Inc., Armonk, New York.Google Scholar
  11. 11.
    Rudolph AM, Kirklin JW, Barratt-Boyes BG. (1993) Cardiac Surgery. Churchill Livingstone, London.Google Scholar
  12. 12.
    Hullin R, Asmus F, Ludwing A, Hersel J, Boekstegers P. (1999) Subunit expression of the cardiac L-type calcium channel is differentially regulated in diastolic heart failure of cardiac allograft. Circulation 100:155–63.CrossRefGoogle Scholar
  13. 13.
    Song LS, Pi YQ, Kim SJ, Yatani A et al. (2005) Paradoxical cellular Ca2+ signaling in severe but compensated canine left ventricular hypertrophy. Circ. Res. 97: 457–64.CrossRefGoogle Scholar
  14. 14.
    Asahi M, Otsu K, Nakayama H et al. (2004) Cardiac-specific overexpression of sarcolipin inhibits sarco(endo)plasmic reticulum Ca2+ ATPase (SERCA2a) activity and impairs cardiac function in mice. PNAS 101:9199–204.CrossRefGoogle Scholar
  15. 15.
    Guo X, Chapman D, Dhalla NS. (2003) Partial prevention of changes in SR gene expression in congestive heart failure due to myocardial infarction by enalapril or losartan. Mol. Cell. Biochem. 254:163–72.CrossRefGoogle Scholar
  16. 16.
    Hasenfuss G. (1998) Animal models of human cardiovascular disease, heart failure and hypertrophy. Cardiovasc. Res. 39:60–76.CrossRefGoogle Scholar
  17. 17.
    Studeli R, Jung S, Mohacsi P et al. (2006) Diastolic dysfunction in human cardiac allografts is related with reduced SERCA2a gene expression. Am. J. Transplant 6:775–82.CrossRefGoogle Scholar
  18. 18.
    Somura F, Izawa H, Iwase M et al. (2001) Reduced myocardial sarcoplasmic reticulum Ca2 + ATPase mRNA expression and biphasic force-frequency relations in patients with hypertrophic cardiomyopathy. Circulation 104:658–63.CrossRefGoogle Scholar
  19. 19.
    Hasenfuss G. (1998) Alterations of calcium-regulatory proteins in heart failure. Cardiovasc. Res. 37:279–89.CrossRefGoogle Scholar
  20. 20.
    Hullin R, Khan IFY, Wirtz S, Mohacsi P, Varadi G, Schwarts A, Herzig S. (2003) Cardiac L-type calcium channel β-subunits expressed in human heart have differential effects on single channel characteristics. J. Biol. Chem. 278:21623–30.CrossRefGoogle Scholar
  21. 21.
    Chomezynski P, Sacchi N. (1987) Single-step method of RNA isolation by acid guanidinium-thyocynate-phenol chloroform extraction. Anal. Biochem. 162:156–9.Google Scholar
  22. 22.
    Lompré AM, Lambert F, Lakatta EG, Schwartz K. (1991) Expression of sarcoplasmic reticulum Ca2 + -ATPase and calsequestrin genes in rat heart during ontogenic development and aging. Circ. Res. 69:1380–8.CrossRefGoogle Scholar
  23. 23.
    Arai M, Otsu K, MacLennan DH, Alpert NR, Periasamy M. (1991) Effect of thyroid hormone on the expression of mRNA encoding sarcoplasmic reticulum proteins. Circ. Res. 69:266–76.CrossRefGoogle Scholar
  24. 24.
    Artman M, Mahony L, Teitel DF. (2002) Counseling families based on etiology and epidemiology. In: Neonatal Cardiology. McGraw-Hill Companies, New York, p. 253–62.Google Scholar
  25. 25.
    Hoffman JI. (1995) Incidence of congenital heart disease: I. Postnatal incidence. Pediatr. Cardiol. 16:103–13.CrossRefGoogle Scholar
  26. 26.
    Shimura M, Minamisawa S, Yokoyama U, Umemura S, Ishikawa Y. (2005) Mechanical stress-dependent transcriptional regulation of sarcolipin gene in the rodent atrium. Biochem. Biophys. Res. Commun. 334:861–6.CrossRefGoogle Scholar
  27. 27.
    Pavlovic M, Schaller A, Steiner B, Berdat P, Carrel T, Pfammatter JP, Amman RA, Gallati S. (2005) Gender modulates the expression of calcium-regulating proteins in pediatric atrial myocardium. Exp. Biol. Med. (Maywood) 230:853–9.CrossRefGoogle Scholar
  28. 28.
    Engelhardt S, Hein L, Dyachenkow V, Kranias EG, Isenberg G, Lohse MJ. (2004) Altered calcium handling is critically involved in the cardiotoxic effects of chronic β-adrenergic stimulation. Circulation 109:1154–60.CrossRefGoogle Scholar
  29. 29.
    Kaynak B, von Heydebreck A, Mebus S, et al. (2003) Genome-wide array analysis of normal and malformed human hearts. Circulation 107:2467–74.CrossRefGoogle Scholar
  30. 30.
    Sharma HS, Peters TH, Moorhouse MJ, van der Spek PJ, Bogers AJ. (2006) DNA microarray analysis for human congenital heart disease. Cell. Biochem. Biophys. 44:1–9.CrossRefGoogle Scholar

Copyright information

© Feinstein Institute for Medical Research 2007

Authors and Affiliations

  • Simona Vittorini
    • 1
  • Simona Storti
    • 1
  • Maria Serena Parri
    • 1
  • Alfredo Giuseppe Cerillo
    • 2
  • Aldo Clerico
    • 3
  1. 1.Molecular Cardiology and Genetics Lab, Institute of Clinical PhysiologyNational Research Council, G. Pasquinucci HospitalMassaItaly
  2. 2.Operative Unit of Cardiac Surgery, Institute of Clinical PhysiologyNational Research Council, G. Pasquinucci HospitalMassaItaly
  3. 3.Scuola Superiore di Studi Universitari e di Perfezionamento S. AnnaPisaItaly

Personalised recommendations