Advertisement

Molecular Medicine

, Volume 9, Issue 9–12, pp 226–234 | Cite as

Tauroursodeoxycholic Acid Prevents Amyloid-β Peptide-Induced Neuronal Death Via a Phosphatidylinositol 3-Kinase-Dependent Signaling Pathway

  • Susana Solá
  • Rui E Castro
  • Pedro A Laires
  • Clifford J Steer
  • Cecília M P Rodrigues
Articles

Abstract

Tauroursodeoxycholic acid (TUDCA), an endogenous bile acid, modulates cell death by interrupting classic pathways of apoptosis. Amyloid-β (Aβ) peptide has been implicated in the pathogenesis of Alzheimer’s disease, where a significant loss of neuronal cells is thought to occur by apoptosis. In this study, we explored the cell death pathway and signaling mechanisms involved in Aβ-induced toxicity and further investigated the anti-apoptotic effect(s) of TUDCA. Our data show significant induction of apoptosis in isolated cortical neurons incubated with Aβ peptide. Apoptosis was associated with translocation of pro-apoptotic Bax to the mitochondria, followed by cytochrome c release, caspase activation, and DNA and nuclear fragmentation. In addition, there was almost immediate but weak activation of the serine/threonine protein kinase Akt. Inhibition of the phosphatidylinositide 3′-OH kinase (PI3K) pathway with wortmannin did not markedly affect Aβ-induced cell death, suggesting that this signaling pathway is not crucial for Aβ-mediated toxicity. Notably, co-incubation with TUDCA significantly modulated each of the Aβ-induced apoptotic events. Moreover, wortmannin decreased TUDCA protection against Aβ-induced apoptosis, reduced Akt phosphorylation, and increased Bax translocation to mitochondria. Together, these findings indicate that Aβ-induced apoptosis of cortical neurons proceeds through a Bax mitochondrial pathway. Further, the PI3K signaling cascade plays a role in regulating the anti-apoptotic effects of TUDCA.

Notes

Acknowledgments

The authors thank Paulo Ribeiro for skillful technical assistance. This work was supported by grant POCTI/BCI/44929/2002 from Fundação para a Ciência e a Tecnologia (FCT), Lisbon, Portugal (to CMPR), and PhD fellowships SFRH/BD/4823/2001 and SFRH/BD/12655/2003 (to SS and REC, respectively) from FCT.

References

  1. 1.
    Masters CL, Simms G, Weinman NA, Multhaup G, McDonald BL, Beyreuther K. (1985) Amyloid plaque core protein in Alzheimer disease and Down syndrome. Proc. Natl. Acad. Sci. U.S.A. 82:4245–9.CrossRefPubMedCentralGoogle Scholar
  2. 2.
    Kang J et al. (1987) The precursor of Alzheimer’s disease amyloid A4 protein resembles a cell-surface receptor. Nature 325:733–6.CrossRefGoogle Scholar
  3. 3.
    Selkoe DJ. (2001) Alzheimer’s disease: genes, proteins, and therapy. Physiol. Rev. Apr. 81:741–66.CrossRefGoogle Scholar
  4. 4.
    Yankner BA, Duffy LK, Kirschner DA. (1990) Neurotrophic and neurotoxic effects of amyloid β protein: reversal by tachykinin neuropeptides. Science 250:279–82.CrossRefGoogle Scholar
  5. 5.
    Loo DT, Copani A, Pike CJ, Whittemore ER, Walencewicz AJ, Cotman CW. (1993) Apoptosis is induced by β-amyloid in cultured central nervous system neurons. Proc. Natl. Acad. Sci. U.S.A. 90:7951–5.CrossRefPubMedCentralGoogle Scholar
  6. 6.
    Behl C, Davis JB, Klier FG, Schubert D. (1994) Amyloid β peptide induces necrosis rather than apoptosis. Brain Res. 645:253–64.CrossRefGoogle Scholar
  7. 7.
    Su JH, Anderson AJ, Cummings BJ, Cotman CW. (1994) Immunohistochemical evidence for apoptosis in Alzheimer’s disease. Neuroreport 5:2529–33.CrossRefGoogle Scholar
  8. 8.
    Yuan J, Yankner BA. (2000) Apoptosis in the nervous system. Nature 407:802–9.CrossRefGoogle Scholar
  9. 9.
    Gross A, McDonnell JM, Korsmeyer SJ. (1999) BCL-2 family members and the mitochondria in apoptosis. Genes Dev. 13:1899–911.CrossRefGoogle Scholar
  10. 10.
    Kroemer G, Reed JC. (2000) Mitochondrial control of cell death. Nat. Med. 6:513–9.CrossRefGoogle Scholar
  11. 11.
    Datta SR, Dudek H, Tao X, Masters S, Fu H, Gotoh Y, Greenberg ME. (1997) Akt phosphorylation of BAD couples survival signals to the cell-intrinsic death machinery. Cell 91:231–41.CrossRefGoogle Scholar
  12. 12.
    del Peso L, Gonzalez-Garcia M, Page C, Herrera R, Nunez G. (1997) Interleukin-3-induced phosphorylation of BAD through the protein kinase Akt. Science 278:687–9.CrossRefGoogle Scholar
  13. 13.
    Wang HG et al. (1999) Ca2+-induced apoptosis through calcineurin dephosphorylation of BAD. Science 284:339–43.CrossRefGoogle Scholar
  14. 14.
    Paradis E, Douillard H, Koutroumanis M, Goodyer C, LeBlanc A. (1996) Amyloid β peptide of Alzheimer’s disease downregulates Bcl-2 and upregulates Bax expression in human neurons. J. Neurosci. 16:7533–9.CrossRefGoogle Scholar
  15. 15.
    Selznick LA, Zheng TS, Flavell RA, Rakic P, Roth KA. (2000) Amyloid β-induced neuronal death is bax-dependent but caspase-independent. J. Neuropathol. Exp. Neurol. 59:271–9.CrossRefGoogle Scholar
  16. 16.
    Culmsee C et al. (2001) A synthetic inhibitor of p53 protects neurons against death induced by ischemic and excitotoxic insults, and amyloid β-peptide. J. Neurochem. 77:220–8.CrossRefGoogle Scholar
  17. 17.
    Gouras GK et al. (2000) Intraneuronal Aβ42 accumulation in human brain. Am. J. Pathol. 156:15–20.CrossRefPubMedCentralGoogle Scholar
  18. 18.
    Zhang Y, McLaughlin R, Goodyer C, LeBlanc A (2002). Selective cytotoxicity of intracellular amyloid β peptide1-42 through p53 and Bax in cultured primary human neurons. J. Cell Biol. 156:519–29.CrossRefPubMedCentralGoogle Scholar
  19. 19.
    Bruce-Keller AJ et al. (1998) Bcl-2 protects isolated plasma and mitochondrial membranes against lipid peroxidation induced by hydrogen peroxide and amyloid β-peptide. J. Neurochem. 70:31–9.CrossRefGoogle Scholar
  20. 20.
    Xu J, Chen S, Ku G, Ahmed SH, Xu J, Chen H, Hsu CY. (2001) Amyloid β peptide-induced cerebral endothelial cell death involves mitochondrial dysfunction and caspase activation. J. Cereb. Blood Flow Metab. 21:702–10.CrossRefGoogle Scholar
  21. 21.
    Casley CS, Land JM, Sharpe MA, Clark JB, Duchen MR, Canevari L. (2002) β-amyloid fragment 25–35 causes mitochondrial dysfunction in primary cortical neurons. Neurobiol. Dis. 10:258–67.CrossRefGoogle Scholar
  22. 22.
    Rodrigues CMP, Solá S, Silva R, Brites D. (2000) Bilirubin and amyloid-β peptide induce cytochrome c release through mitochondrial membrane permeabilization. Mol. Med. 6:936–46.CrossRefPubMedCentralGoogle Scholar
  23. 23.
    Rodrigues CMP, Solá S, Brito MA, Brondino CD, Brites D, Moura JJ. (2001) Amyloid β-peptide disrupts mitochondrial membrane lipid and protein structure: protective role of tauroursodeoxycholate. Biochem. Biophys. Res. Commun. 281:468–74.CrossRefGoogle Scholar
  24. 24.
    Stein TD, Johnson JA. (2002) Lack of neurodegeneration in transgenic mice overexpressing mutant amyloid precursor protein is associated with increased levels of transthyretin and the activation of cell survival pathways. J. Neurosci. 22:7380–8.CrossRefGoogle Scholar
  25. 25.
    Wei W, Wang X, Kusiak JW. (2002) Signaling events in amyloid β-peptide-induced neuronal death and insulin-like growth factor I protection. J. Biol. Chem. 277:17649–56.CrossRefGoogle Scholar
  26. 26.
    Kane LP, Shapiro VS, Stokoe D, Weiss A. (1999) Induction of NF-κB by the Akt/PKB kinase. Curr. Biol. 9:601–4.CrossRefGoogle Scholar
  27. 27.
    Mattson MP, Camandola S. (2001) NF-κB in neuronal plasticity and neurodegenerative disorders. J. Clin. Invest. 107:247–54.CrossRefPubMedCentralGoogle Scholar
  28. 28.
    Kaltschmidt B, Uherek M, Volk B, Baeuerle PA, Kaltschmidt C. (1997) Transcription factor NF-κB is activated in primary neurons by amyloid β peptides and in neurons surrounding early plaques from patients with Alzheimer disease. Proc. Natl. Acad. Sci. U.S.A. 94:2642–7.CrossRefPubMedCentralGoogle Scholar
  29. 29.
    Kaltschmidt B, Uherek M, Wellmann H, Volk B, Kaltschmidt C. (1999) Inhibition of NF-κB potentiates amyloid β-mediated neuronal apoptosis. Proc. Natl. Acad. Sci. U.S.A. 96:9409–14.CrossRefPubMedCentralGoogle Scholar
  30. 30.
    Rodrigues CMP, Fan G, Ma X, Kren BT, Steer CJ. (1998) A novel role for ursodeoxycholic acid in inhibiting apoptosis by modulating mitochondrial membrane perturbation. J. Clin. Invest. 101:2790–9.CrossRefPubMedCentralGoogle Scholar
  31. 31.
    Rodrigues CMP, Ma X, Linehan-Stieers C, Fan G, Kren BT, Steer CJ. (1999) Ursodeoxycholic acid prevents cytochrome c release in apoptosis by inhibiting mitochondrial membrane depolarization and channel formation. Cell Death Differ. 6:842–54. 234CrossRefGoogle Scholar
  32. 32.
    Rodrigues CMP, Stieers CL, Keene CD, Ma X, Kren BT, Low WC, Steer CJ. (2000) Tauroursodeoxycholic acid partially prevents apoptosis induced by 3-nitropropionic acid: evidence for a mitochondrial pathway independent of the permeability transition. J. Neurochem. 75:2368–79.CrossRefGoogle Scholar
  33. 33.
    Rodrigues CMP, Solá S, Sharpe JC, Moura JJG, Steer CJ. (2003) Tauroursodeoxycholic acid prevents Bax-induced membrane perturbation and cytochrome c release in isolated mitochondria. Biochemistry 42:3070–80.CrossRefGoogle Scholar
  34. 34.
    Qiao L et al. (2002) Inhibition of the MAPK and PI3K pathways enhances UDCA-induced apoptosis in primary rodent hepatocytes. Hepatology 35:779–89.CrossRefGoogle Scholar
  35. 35.
    Keene CD, Rodrigues CMP, Eich T, Chhabra MS, Steer CJ, Low WC. (2002) Tauroursodeoxycholic acid, a bile acid, is neuroprotective in a transgenic animal model of Huntington’s disease. Proc. Natl. Acad. Sci. U.S.A. 99:10671–6.CrossRefPubMedCentralGoogle Scholar
  36. 36.
    Rodrigues CMP, Spellman SR, Solá S, Grande AW, Linehan-Stieers C, Low WC, Steer CJ. (2002) Neuroprotection by a bile acid in an acute stroke model in the rat. J. Cereb. Blood Flow Metab. 22:463–71.CrossRefGoogle Scholar
  37. 37.
    Rodrigues CMP, Solá S, Nan Z, Castro RE, Ribeiro PS, Low WC, Steer CJ. (2003) Tauroursodeoxycholic acid reduces apoptosis and protects against neurological injury after acute hemorrhagic stroke in rats. Proc. Natl. Acad. Sci. U.S.A. 100:6087–92.CrossRefPubMedCentralGoogle Scholar
  38. 38.
    Brewer GJ, Torricelli JR, Evege EK, Price PJ. (1993) Optimized survival of hippocampal neurons in B27-supplemented Neurobasal, a new serum-free medium combination. J. Neurosci. Res. 35:567–76.CrossRefGoogle Scholar
  39. 39.
    Datta SR, Brunet A, Greenberg ME. (1999) Cellular survival: a play in three Akts. Genes Dev. 13:2905–27.CrossRefGoogle Scholar
  40. 40.
    Shimohama S. (2000) Apoptosis in Alzheimer’s disease—an update. Apoptosis 5:9–16.CrossRefGoogle Scholar
  41. 41.
    MacGibbon GA et al. (1997) Bax expression in mammalian neurons undergoing apoptosis, and in Alzheimer’s disease hippocampus. Brain Res. 750:223–34.CrossRefGoogle Scholar
  42. 42.
    Nagy ZS, Esiri MM. (1997) Apoptosis-related protein expression in the hippocampus in Alzheimer’s disease. Neurobiol. Aging 18:565–71.CrossRefGoogle Scholar
  43. 43.
    Su JH, Deng G, Cotman CW. (1997) Bax protein expression is increased in Alzheimer’s brain: correlations with DNA damage, Bcl-2 expression, and brain pathology. J. Neuropathol. Exp. Neurol. 56:86–93.CrossRefGoogle Scholar
  44. 44.
    Engidawork E, Gulesserian T, Seidl R, Cairns N, Lubec G. (2001) Expression of apoptosis related proteins in brains of patients with Alzheimer’s disease. Neurosci. Lett. 303:79–82.CrossRefGoogle Scholar
  45. 45.
    LaFerla FM, Hall CK, Ngo L, Jay G. (1996) Extracellular deposition of β-amyloid upon p53-dependent neuronal cell death in transgenic mice. J. Clin. Invest. 98:1626–32.CrossRefPubMedCentralGoogle Scholar
  46. 46.
    Kitamura Y, Shimohama S, Kamoshima W, Matsuoka Y, Nomura Y, Taniguchi T. (1997) Changes of p53 in the brains of patients with Alzheimer’s disease. Biochem. Biophys. Res. Commun. 232: 418–21.CrossRefGoogle Scholar
  47. 47.
    Burgering BM, Coffer PJ. (1995) Protein kinase B (c-Akt) in phosphatidylinositol-3-OH kinase signal transduction. Nature 376:599–602.CrossRefGoogle Scholar
  48. 48.
    Franke TF, Kaplan DR, Cantley LC, Toker A. (1997) Direct regulation of the Akt protooncogene product by phosphatidylinositol-3,4-bisphosphate. Science 275:665–8.CrossRefGoogle Scholar
  49. 49.
    Kuner P, Schubenel R, Hertel C. (1998) β-amyloid binds to p57NTR and activates NF-κB in human neuroblastoma cells. J. Neurosci. Res. 54:798–804.CrossRefGoogle Scholar
  50. 50.
    Lorenzo A et al. (2000) Amyloid β interacts with the amyloid precursor protein: a potential toxic mechanism in Alzheimer’s disease. Nat. Neurosci. 3:460–4.CrossRefGoogle Scholar
  51. 51.
    Kajkowski EM et al. (2001) β-Amyloid peptide-induced apoptosis regulated by a novel protein containing a G protein activation module. J. Biol. Chem. 276:18748–56.CrossRefGoogle Scholar
  52. 52.
    Guicciardi ME, Gores GJ. (2002) Ursodeoxycholic acid cytoprotection: dancing with death receptors and survival pathways. Hepatology 35:971–3.CrossRefGoogle Scholar
  53. 53.
    Kennedy SG, Kandel ES, Cross TK, Hay N. (1999) Akt/Protein kinase B inhibits cell death by preventing the release of cytochrome c from mitochondria. Mol. Cell Biol. 19:5800–10.CrossRefPubMedCentralGoogle Scholar
  54. 54.
    Tsuruta F, Masuyama N, Gotoh Y. (2002) The phosphatidylinositol 3-kinase (PI3K)-Akt pathway suppresses Bax translocation to mitochondria. J. Biol. Chem. 277:14040–7.CrossRefGoogle Scholar
  55. 55.
    Golde TE, Eckman CB. (2001) Cholesterol modulation as an emerging strategy for the treatment of Alzheimer’s disease. Drug Discov. Today 6:1049–55.CrossRefGoogle Scholar

Copyright information

© Feinstein Institute for Medical Research 2003

Authors and Affiliations

  • Susana Solá
    • 1
  • Rui E Castro
    • 1
  • Pedro A Laires
    • 1
  • Clifford J Steer
    • 2
    • 3
  • Cecília M P Rodrigues
    • 1
  1. 1.Centro de Patogénese Molecular, Faculty of PharmacyUniversity of LisbonLisbonPortugal
  2. 2.Department of MedicineUniversity of Minnesota Medical SchoolMinneapolisUSA
  3. 3.Departments of Genetics, Cell Biology, and DevelopmentUniversity of Minnesota Medical SchoolMinneapolisUSA

Personalised recommendations