Annihilators of Skew Derivations with Engel Conditions on Prime Rings

Abstract

Let R be a noncommutative prime ring of characteristic different from 2, with its two-sided Martindale quotient ring Q, C the extended centroid of R and aR. Suppose that δ is a nonzero σ-derivation of R such that a[δ(xn), xn]k = 0 for all xR, where σ is an automorphism of R, n and k are fixed positive integers. Then a = 0.

This is a preview of subscription content, log in to check access.

References

  1. [1]

    E. Albaş, N. Argaç, V. De Filippis: Generalized derivations with Engel conditions on one-sided ideals. Commun. Algebra 36 (2008), 2063–2071.

    MathSciNet  Article  Google Scholar 

  2. [2]

    N. Baydar Yarbil, V. De Filippis: A quadratic differential identity with skew derivations. Commun. Algebra 46 (2018), 205–216.

    MathSciNet  Article  Google Scholar 

  3. [3]

    K. I. Beidar, W. S. Martindale III, A. V. Mikhalev: Rings with Generalized Identities. Pure and Applied Mathematics 196, Marcel Dekker, New York, 1996.

    Google Scholar 

  4. [4]

    J.-C. Chang: On the identity h(x) = af(x) + g(x)b. Taiwanese J. Math. 7 (2003), 103–113.

    MathSciNet  Article  Google Scholar 

  5. [5]

    J.-C. Chang: Generalized skew derivations with annihilating Engel conditions. Taiwanese J. Math. 12 (2008), 1641–1650.

    MathSciNet  Article  Google Scholar 

  6. [6]

    J.-C. Chang: Generalized skew derivations with Engel conditions on Lie ideals. Bull. Inst. Math., Acad. Sin. (N.S.) 6 (2011), 305–320.

    MathSciNet  MATH  Google Scholar 

  7. [7]

    M.-C. Chou, C.-K. Liu: Annihilators of skew derivations with Engel conditions on Lie ideals. Commun. Algebra 44 (2016), 898–911.

    MathSciNet  Article  Google Scholar 

  8. [8]

    C.-L. Chuang: Differential identities with automorphisms and antiautomorphisms I. J. Algebra 149 (1992), 371–404.

    MathSciNet  Article  Google Scholar 

  9. [9]

    C.-L. Chuang: Differential identities with automorphisms and antiautomorphisms II. J. Algebra 160 (1993), 130–171.

    MathSciNet  Article  Google Scholar 

  10. [10]

    C.-L. Chuang, M.-C. Chou, C.-K. Liu: Skew derivations with annihilating Engel conditions. Publ. Math. 68 (2006), 161–170.

    MathSciNet  MATH  Google Scholar 

  11. [11]

    C.-L. Chuang, T.-K. Lee: Identities with a single skew derivation. J. Algebra 288 (2005), 59–77.

    MathSciNet  Article  Google Scholar 

  12. [12]

    C.-L. Chuang, C.-K. Liu: Extended Jacobson density theorem for rings with skew derivations. Commun. Algebra 35 (2007), 1391–1413.

    MathSciNet  Article  Google Scholar 

  13. [13]

    V. De Filippis: On the annihilator of commutators with derivation in prime rings. Rend. Circ. Math. Palermo, II Ser. 49 (2000), 343–352.

    MathSciNet  Article  Google Scholar 

  14. [14]

    B. Dhara, S. Kar, K. G. Pradhan: An Engel condition of generalized derivations with annihilator on Lie ideal in prime rings. Mat. Vesn. 68 (2016), 164–174.

    MathSciNet  MATH  Google Scholar 

  15. [15]

    T. S. Erickson, W. S. Martindale III, J. M. Osborn: Prime nonassociative algebras. Pac. J. Math. 60 (1975), 49–63.

    MathSciNet  Article  Google Scholar 

  16. [16]

    N. Jacobson: Structure of Rings. American Mathematical Society Colloquium Publications 37, AMS, Providence, 1964.

    Google Scholar 

  17. [17]

    V. K. Kharchenko: Generalized identities with automorphisms. Algebra Logic 14 (1976), 132–148

    Article  Google Scholar 

  18. [17a]

    translation from V. K. Kharchenko Algebra Logika 14 (1975), 215–237.

    MathSciNet  Google Scholar 

  19. [18]

    T. Y. Lam: A First Course in Noncommutative Rings. Graduate Texts in Mathematics 131, Springer, New York, 1991.

    Google Scholar 

  20. [19]

    C. Lanski: An Engel condition with derivation for left ideals. Proc. Am. Math. Soc. 125 (1997), 339–345.

    MathSciNet  Article  Google Scholar 

  21. [20]

    C. Lanski: Skew derivations and Engel conditions. Commun. Algebra 42 (2014), 139–152.

    MathSciNet  Article  Google Scholar 

  22. [21]

    T.-K. Lee: Generalized derivations of left faithful rings. Commun. Algebra 27 (1999), 4057–4073.

    MathSciNet  Article  Google Scholar 

  23. [22]

    W. S. Martindale III: Prime rings satisfying a generalized polynomial identity. J. Algebra 12 (1969), 576–584.

    MathSciNet  Article  Google Scholar 

  24. [23]

    E. C. Posner: Derivations in prime rings. Proc. Am. Math. Soc. 8 (1957), 1093–1100.

    MathSciNet  Article  Google Scholar 

  25. [24]

    W.-K. Shiue: Annihilators of derivations with Engel conditions on Lie ideals. Rend. Circ. Mat. Palermo (2) 52 (2003), 505–509.

    MathSciNet  Article  Google Scholar 

  26. [25]

    W.-K. Shiue: Annihilators of derivations with Engel conditions on one-sided ideals. Publ. Math. 62 (2003), 237–243.

    MathSciNet  MATH  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding authors

Correspondence to Taylan Pehlivan or Emine Albas.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Pehlivan, T., Albas, E. Annihilators of Skew Derivations with Engel Conditions on Prime Rings. Czech Math J 70, 587–603 (2020). https://doi.org/10.21136/CMJ.2019.0412-18

Download citation

Keywords

  • prime ring
  • derivation
  • skew derivation
  • automorphism

MSC 2010

  • 16W20
  • 16W25