A Unified Analysis of Elliptic Problems with Various Boundary Conditions and Their Approximation

Abstract

We design an abstract setting for the approximation in Banach spaces of operators acting in duality. A typical example are the gradient and divergence operators in Lebesgue-Sobolev spaces on a bounded domain. We apply this abstract setting to the numerical approximation of Leray-Lions type problems, which include in particular linear diffusion. The main interest of the abstract setting is to provide a unified convergence analysis that simultaneously covers (i) all usual boundary conditions, (ii) several approximation methods. The considered approximations can be conforming (that is, the approximation functions can belong to the energy space relative to the problem) or not, and include classical as well as recent numerical schemes. Convergence results and error estimates are given. We finally briefly show how the abstract setting can also be applied to some models such as flows in fractured medium, elasticity equations and diffusion equations on manifolds.

This is a preview of subscription content, log in to check access.

References

  1. [1]

    B. Andreianov, F. Boyer, F. Hubert: Besov regularity and new error estimates for finite volume approximations of the p-Laplacian. Numer. Math. 100 (2005), 565–592.

    MathSciNet  Article  Google Scholar 

  2. [2]

    B. Andreianov, F. Boyer, F. Hubert: On the finite-volume approximation of regular solutions of the p-Laplacian. IMA J. Numer. Anal. 26 (2006), 472–502.

    MathSciNet  Article  Google Scholar 

  3. [3]

    B. Andreianov, F. Boyer, F. Hubert: Discrete Besov framework for finite volume approximation of the p-Laplacian on non-uniform Cartesian grids. ESAIM Proc. 18 (2007), 1–10.

    MathSciNet  Article  Google Scholar 

  4. [4]

    B. Andreianov, F. Boyer, F. Hubert: Discrete duality finite volume schemes for Leray-Lions-type elliptic problems on general 2D meshes. Numer. Methods Partial Differ. Equations 23 (2007), 145–195.

    MathSciNet  Article  Google Scholar 

  5. [5]

    P. F. Antonietti, N. Bigoni, M. Verani: Mimetic finite difference approximation of quasi-linear elliptic problems. Calcolo 52 (2015), 45–67.

    MathSciNet  Article  Google Scholar 

  6. [6]

    J. W. Barrett, W. B. Liu.: Finite element approximation of the p-Laplacian. Math. Comput. 61 (1993), 523–537.

    MathSciNet  MATH  Google Scholar 

  7. [7]

    J. W. Barrett, W. B. Liu: Finite element approximation of the parabolic p-Laplacian. SIAM J. Numer. Anal. 31 (1994), 413–428.

    MathSciNet  Article  Google Scholar 

  8. [8]

    J. W. Barrett, W. B. Liu: Quasi-norm error bounds for the finite element approximation of a non-Newtonian flow. Numer. Math. 68 (1994), 437–456.

    MathSciNet  Article  Google Scholar 

  9. [9]

    A. Beurling, A. E. Livingston: A theorem on duality mappings in Banach spaces. Ark. Mat. 4 (1962), 405–411.

    MathSciNet  Article  Google Scholar 

  10. [10]

    K. Brenner, M. Groza, C. Guichard, G. Lebeau, R. Masson: Gradient discretization of hybrid dimensional Darcy flows in fractured porous media. Numer. Math. 134 (2016), 569–609.

    MathSciNet  Article  Google Scholar 

  11. [11]

    H. Brezis: Functional Analysis, Sobolev Spaces and Partial Differential Equations. Universitext, Springer, New York, 2011.

    Google Scholar 

  12. [12]

    F. E. Browder: On a theorem of Beurling and Livingston. Can. J. Math. 17 (1965), 367–372.

    MathSciNet  Article  Google Scholar 

  13. [13]

    F. E. Browder, D. G. de Figueiredo: J-monotone nonlinear operators in Banach spaces. Djairo G. de Figueiredo. Selected Papers (D. G. Costa, eds.). Springer, Cham, 2013, pp. 1–9.

    Google Scholar 

  14. [14]

    E. Burman, A. Ern: Discontinuous Galerkin approximation with discrete variational principle for the nonlinear Laplacian. C. R. Math. Acad. Sci. Paris 346 (2008), 1013–1016.

    MathSciNet  Article  Google Scholar 

  15. [15]

    P. G. Ciarlet, P. Ciarlet, Jr.: Another approach to linearized elasticity and a new proof of Korn’s inequality. Math. Models Methods Appl. Sci. 15 (2005), 259–271.

    MathSciNet  Article  Google Scholar 

  16. [16]

    K. Deimling: Nonlinear Functional Analysis. Springer, Berlin, 1985.

    Google Scholar 

  17. [17]

    D. A. Di Pietro, J. Droniou: A hybrid high-order method for Leray-Lions elliptic equations on general meshes. Math. Comput. 86 (2017), 2159–2191.

    MathSciNet  Article  Google Scholar 

  18. [18]

    J. Droniou: Finite volume schemes for fully non-linear elliptic equations in divergence form. ESAIM Math. Model. Numer. Anal. 40 (2006), 1069–1100.

    MathSciNet  Article  Google Scholar 

  19. [19]

    J. Droniou, R. Eymard, T. Gallouët, C. Guichard, R. Herbin: The Gradient Discretisation Method. Mathematics & Applications 82, Springer, Cham, 2018.

    Google Scholar 

  20. [20]

    R. Eymard, T. Gallouët, R. Herbin: Cell centred discretisation of non linear elliptic problems on general multidimensional polyhedral grids. J. Numer. Math. 17 (2009), 173–193.

    MathSciNet  Article  Google Scholar 

  21. [21]

    R. Eymard, C. Guichard: Discontinuous Galerkin gradient discretisations for the approximation of second-order differential operators in divergence form. Comput. Appl. Math. 37 (2018), 4023–4054.

    MathSciNet  Article  Google Scholar 

  22. [22]

    L. L. Glazyrina, M. F. Pavlova: On an approximate solution method for the problem of surface and groundwater combined movement with exact approximation on the section line. Uch. Zap. Kazan. Univ., Ser. Fiz.-Mat. Nauki 158 (2016), 482–499. (In Russian.)

    MathSciNet  Google Scholar 

  23. [23]

    R. Glowinski, J. Rappaz: Approximation of a nonlinear elliptic problem arising in a non-Newtonian fluid flow model in glaciology. M2AN Math. Model. Numer. Anal. 37 (2003), 175–186.

    MathSciNet  Article  Google Scholar 

  24. [24]

    T. Kato: Introduction to the theory of operators in Banach spaces. Perturbation Theory for Linear Operators. Classics in Mathematics, Springer, Berlin, 1995, pp. 126–188.

    Google Scholar 

  25. [25]

    J. Leray, J.-L. Lions: Quelques résultats de Višik sur les problèmes elliptiques non linéaires par les méthodes de Minty-Browder. Bull. Soc. Math. Fr. 93 (1965), 97–107. (In French.)

    Article  Google Scholar 

  26. [26]

    J. Lindenstrauss: On nonseparable reflexive Banach spaces. Bull. Am. Math. Soc. 72 (1966), 967–970.

    MathSciNet  Article  Google Scholar 

  27. [27]

    W. B. Liu, J. W. Barrett: A further remark on the regularity of the solutions of the p-Laplacian and its applications to their finite element approximation. Nonlinear Anal., Theory Methods Appl. 21 (1993), 379–387.

    MathSciNet  Article  Google Scholar 

  28. [28]

    W. B. Liu, J. W. Barrett: A remark on the regularity of the solutions of the p-Laplacian and its application to their finite element approximation. J. Math. Anal. Appl. 178 (1993), 470–487.

    MathSciNet  Article  Google Scholar 

  29. [29]

    G. J. Minty: On a “monotonicity” method for the solution of nonlinear equations in Banach spaces. Proc. Natl. Acad. Sci. USA 50 (1963), 1038–1041.

    Article  Google Scholar 

Download references

Acknowledgements

The authors warmly thank Wolfgang Arendt and Isabelle Chalendar for inspiring discussions.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Robert Eymard.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Droniou, J., Eymard, R., Gallouët, T. et al. A Unified Analysis of Elliptic Problems with Various Boundary Conditions and Their Approximation. Czech Math J 70, 339–368 (2020). https://doi.org/10.21136/CMJ.2019.0312-18

Download citation

Keywords

  • elliptic problem
  • various boundary conditions
  • gradient discretisation method
  • Leray-Lions problem

MSC 2010

  • 65J05
  • 65N99
  • 47A58