Czechoslovak Mathematical Journal

, Volume 68, Issue 2, pp 559–576 | Cite as

Libera and Hilbert matrix operator on logarithmically weighted Bergman, Bloch and Hardy-Bloch spaces

  • Boban Karapetrović


We show that if α > 1, then the logarithmically weighted Bergman space \(A_{{{\log }^\alpha }}^2\) is mapped by the Libera operator L into the space \(A_{{{\log }^{\alpha - 1}}}^2\), while if α > 2 and 0 < εα−2, then the Hilbert matrix operator H maps \(A_{{{\log }^\alpha }}^2\) into \(A_{{{\log }^{\alpha - 2 - \varepsilon }}}^2\).

We show that the Libera operator L maps the logarithmically weighted Bloch space \({B_{{{\log }^\alpha }}}\), α ∈ R, into itself, while H maps \({B_{{{\log }^\alpha }}}\) into \({B_{{{\log }^{\alpha + 1}}}}\).

In Pavlović’s paper (2016) it is shown that L maps the logarithmically weighted Hardy-Bloch space \(B_{{{\log }^\alpha }}^1\), α > 0, into \(B_{{{\log }^{\alpha - 1}}}^1\). We show that this result is sharp. We also show that H maps \(B_{{{\log }^\alpha }}^1\), α > 0, into \(B_{{{\log }^{\alpha - 1}}}^1\) and that this result is sharp also.


Libera operator Hilbert matrix operator Hardy space Bergman space Bloch space Hardy-Bloch space 

MSC 2010

47B38 47G10 30H25 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    M. Jevtić, B. Karapetrović: Hilbert matrix operator on Besov spaces. Publ. Math. 90 (2017), 359–371.MathSciNetzbMATHGoogle Scholar
  2. [2]
    M. Jevtić, B. Karapetrović: Libera operator on mixed norm spaces H v p,q,α when 0 < p < 1. Filomat 31 (2017), 4641–4650.MathSciNetCrossRefGoogle Scholar
  3. [3]
    M. Jevtić, D. Vukotić, M. Arsenović: Taylor Coefficients and Coefficient Multipliers of Hardy and Bergman-Type Spaces. RSME Springer Series 2, Springer, Cham, 2016.CrossRefzbMATHGoogle Scholar
  4. [4]
    B. Lanucha, M. Nowak, M. Pavlović: Hilbert matrix operator on spaces of analytic functions. Ann. Acad. Sci. Fenn., Math. 37 (2012), 161–174.MathSciNetCrossRefzbMATHGoogle Scholar
  5. [5]
    M. Mateljević, M. Pavlović: L p-behaviour of the integral means of analytic functions. Stud. Math. 77 (1984), 219–237.CrossRefzbMATHGoogle Scholar
  6. [6]
    M. Pavlović: Definition and properties of the libera operator on mixed norm spaces. The Scientific World Journal 2014 (2014), Article ID 590656, 15 pages.Google Scholar
  7. [7]
    M. Pavlović: Function Classes on the Unit Disc. An introduction. De Gruyter Studies in Mathematics 52, De Gruyter, Berlin, 2014.Google Scholar
  8. [8]
    M. Pavlović: Logarithmic Bloch space and its predual. Publ. Inst. Math. (Beograd) (N.S.) 100 (114) (2016), 1–16.MathSciNetzbMATHGoogle Scholar
  9. [9]
    K. Zhu: Operator Theory in Function Spaces. Monographs and Textbooks in Pure and Applied Mathematics 139, Marcel Dekker, New York, 1990.Google Scholar
  10. [10]
    A. Zygmund: Trigonometric Series. Vol. I, II. Cambridge University Press, Cambridge, 1959.zbMATHGoogle Scholar

Copyright information

© Institute of Mathematics of the Academy of Sciences of the Czech Republic, Praha, Czech Republic 2018

Authors and Affiliations

  1. 1.Faculty of MathematicsUniversity of BelgradeBelgradeSerbia

Personalised recommendations