Czechoslovak Mathematical Journal

, Volume 68, Issue 1, pp 141–148 | Cite as

Group algebras whose groups of normalized units have exponent 4

  • Victor Bovdi
  • Mohammed Salim


We give a full description of locally finite 2-groups G such that the normalized group of units of the group algebra FG over a field F of characteristic 2 has exponent 4.


group of exponent 4 unit group modular group algebra 

MSC 2010

16S34 16U60 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    A. A. Bovdi: Group Rings. University publishers, Uzgorod, 1974. (In Russian.)zbMATHGoogle Scholar
  2. [2]
    A. Bovdi: The group of units of a group algebra of characteristic p. Publ. Math. 52 (1998), 193–244.MathSciNetzbMATHGoogle Scholar
  3. [3]
    V. Bovdi: Group algebras whose group of units is powerful. J. Aust. Math. Soc. 87 (2009), 325–328.MathSciNetCrossRefzbMATHGoogle Scholar
  4. [4]
    V. Bovdi, M. Dokuchaev: Group algebras whose involutory units commute. Algebra Colloq. 9 (2002), 49–64.MathSciNetzbMATHGoogle Scholar
  5. [5]
    V. Bovdi, A. Konovalov, R. Rossmanith, C. Schneider: LAGUNA Lie AlGebras and UNits of group Algebras. Version 3.5.0, 2009, http: // Scholar
  6. [6]
    A. Bovdi, P. Lakatos: On the exponent of the group of normalized units of modular group algebras. Publ. Math. 42 (1993), 409–415.MathSciNetzbMATHGoogle Scholar
  7. [7]
    A. Caranti: Finite p-groups of exponent p 2 in which each element commutes with its endomorphic images. J. Algebra 97 (1985), 1–13.MathSciNetCrossRefzbMATHGoogle Scholar
  8. [8]
    GAP: The GAP Group. GAP—Groups, Algorithms, and Programming, Version 4.4.12, Scholar
  9. [9]
    N. D. Gupta, M. F. Newman: The nilpotency class of finitely generated groups of exponent four, Proc. 2nd Int. Conf. Theory of Groups, Canberra, 1973, Lect. Notes Math. 372, Springer, Berlin. 1974, pp. 330–332.zbMATHGoogle Scholar
  10. [10]
    M. Hall, Jr.: The Theory of Groups, The Macmillan Company, New York, 1959.zbMATHGoogle Scholar
  11. [11]
    Z. Janko: On finite nonabelian 2-groups all of whose minimal nonabelian subgroups are of exponent 4. J. Algebra 315 (2007), 801–808.MathSciNetCrossRefzbMATHGoogle Scholar
  12. [12]
    Z. Janko: Finite nonabelian 2-groups all of whose minimal nonabelian subgroups are metacyclic and have exponent 4. J. Algebra 321 (2009), 2890–2897.MathSciNetCrossRefzbMATHGoogle Scholar
  13. [13]
    Z. Janko: Finite p-groups of exponent p e all of whose cyclic subgroups of order p e are normal. J. Algebra 416 (2014), 274–286.MathSciNetCrossRefzbMATHGoogle Scholar
  14. [14]
    M. Quick: Varieties of groups of exponent 4. J. Lond. Math. Soc., II. Ser. 60 (1999), 747–756.MathSciNetCrossRefzbMATHGoogle Scholar
  15. [15]
    A. Shalev: Dimension subgroups, nilpotency indices, and the number of generators of ideals in p-group algebras. J. Algebra 129 (1990), 412–438.MathSciNetCrossRefzbMATHGoogle Scholar
  16. [16]
    A. Shalev: Lie dimension subgroups, Lie nilpotency indices, and the exponent of the group of normalized units. J. Lond. Math. Soc., II. Ser. 43 (1991), 23–36.MathSciNetCrossRefzbMATHGoogle Scholar
  17. [17]
    M. R. Vaughan-Lee, J. Wiegold: Countable locally nilpotent groups of finite exponent without maximal subgroups. Bull. Lond. Math. Soc. 13 (1981), 45–46.MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Institute of Mathematics of the Academy of Sciences of the Czech Republic, Praha, Czech Republic 2018

Authors and Affiliations

  1. 1.Department of Mathematical SciencesUnited Arab Emirates UniversityAl AinUnited Arab Emirates

Personalised recommendations