Skip to main content
Log in

A higher rank Selberg sieve and applications

  • Published:
Czechoslovak Mathematical Journal Aims and scope Submit manuscript

Abstract

We develop an axiomatic formulation of the higher rank version of the classical Selberg sieve. This allows us to derive a simplified proof of the Zhang and Maynard-Tao result on bounded gaps between primes. We also apply the sieve to other subsequences of the primes and obtain bounded gaps in various settings.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. J. Friedlander, H. Iwaniec: Opera de Cribro. Colloquium Publications, American Mathematical Society 57, Providence, 2010.

    Google Scholar 

  2. H. Halberstam, H.-E. Richert: Sieve Methods. London Mathematical Society Monographs 4, Academic Press, London, 1974.

    Google Scholar 

  3. C. Hooley: On Artin’s conjecture. J. Reine Angew. Math. 225 (1967), 209–220.

    MathSciNet  MATH  Google Scholar 

  4. J. C. Lagarias, A. M. Odlyzko: Effective versions of the Chebotarev density theorem. Algebraic Number Fields: L-Functions and Galois Properties. Proc. Sympos., Univ. Durham, Durham, 1975, Academic Press, London, 1977, pp. 409–464.

    Google Scholar 

  5. J. Maynard: Small gaps between primes. Ann. Math. (2) 181 (2015), 383–413.

    Article  MathSciNet  MATH  Google Scholar 

  6. M. R. Murty: Artin’s Conjecture and Non-abelian Sieves. Ph.D. Thesis, Massachusetts Institute of Technology, Cambridge, 1980.

    Google Scholar 

  7. M. R. Murty, V. K. Murty: A variant of the Bombieri-Vinogradov theorem. Number Theory. Proc. Conf., Montreal, 1985, CMS Conf. Proc. 7, 1987, pp. 243–272.

    Google Scholar 

  8. P. Pollack: Bounded gaps between primes with a given primitive root. Algebra Number Theory 8 (2014), 1769–1786.

    Article  MathSciNet  MATH  Google Scholar 

  9. D. H. J. Polymath: Variants of the Selberg sieve, and bounded intervals containing many primes. Res. Math. Sci. (electronic only) 1 (2014), Paper No. 12, 83 pages; erratum ibid. (electronic only) 2 (2015), Paper No. 15, 2 pages.

    Article  MathSciNet  MATH  Google Scholar 

  10. A. Selberg: Sieve methods. 1969 Number Theory Institute. Proc. Sympos. Pure Math. 20, Stony Brook, 1969, Amer. Mat. Soc., Providence, 1971, pp. 311–351.

    Google Scholar 

  11. A. Selberg: Collected Papers. Volume II. Springer, Berlin, 1991.

    Google Scholar 

  12. J. Thorner: Bounded gaps between primes in Chebotarev sets. Res. Math. Sci. (electronic only) 1 (2014), Paper No. 4, 16 pages.

    Article  MathSciNet  MATH  Google Scholar 

  13. A. Vatwani: Bounded gaps between Gaussian primes. J. Number Theory 171 (2017), 449–473.

    Article  MathSciNet  MATH  Google Scholar 

  14. Y. Zhang: Bounded gaps between primes. Ann. Math. (2) 179 (2014), 1121–1174.

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Akshaa Vatwani.

Additional information

Research partially supported by an Ontario Graduate Scholarship.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vatwani, A. A higher rank Selberg sieve and applications. Czech Math J 68, 169–193 (2018). https://doi.org/10.21136/CMJ.2017.0410-16

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.21136/CMJ.2017.0410-16

Keywords

MSC 2010

Navigation