# Generalized derivations acting on multilinear polynomials in prime rings

Article

First Online:

Received:

## Abstract

Let for all

*R*be a noncommutative prime ring of characteristic different from 2 with Utumi quotient ring*U*and extended centroid*C*, let*F*,*G*and*H*be three generalized derivations of*R*,*I*an ideal of*R*and*f*(*x*_{1},...,*x*_{ n }) a multilinear polynomial over*C*which is not central valued on*R*. If$$F(f(r))G(f(r)) = H(f(r)^2 )$$

*r*= (*r*_{1},...,*r*_{ n }) ∈*I*^{ n }, then one of the following conditions holds:- (1)
there exist

*a*∈*C*and*b*∈*U*such that*F*(*x*) =*ax*,*G*(*x*) =*xb*and*H*(*x*) =*xab*for all*x*∈*R* - (2)
there exist

*a*,*b*∈*U*such that*F*(*x*) =*xa*,*G*(*x*) =*bx*and*H*(*x*) =*abx*for all*x*∈*R*, with*ab*∈*C* - (3)
there exist

*b*∈*C*and*a*∈*U*such that*F*(*x*) =*ax*,*G*(*x*) =*bx*and*H*(*x*) =*abx*for all*x*∈*R* - (4)
*f*(*x*_{1},...,*x*_{ n })^{2}is central valued on*R*and one of the following conditions holds- (a)
there exist

*a*,*b*,*p*,*p*’ ∈*U*such that*F*(*x*) =*ax*,*G*(*x*) =*xb*and*H*(*x*) =*px*+*xp*’ for all*x*∈*R*, with*ab*=*p*+*p*’ - (b)
there exist

*a*,*b*,*p*,*p*’ ∈*U*such that*F*(*x*) =*xa*,*G*(*x*) =*bx*and*H*(*x*) =*px*+*xp*’ for all*x*∈*R*, with*p*+*p*’ = ab ∈*C*.

- (a)

## MSC 2010

prime ring derivation generalized derivation extended centroid Utumi quotient ring## MSC 2010

16W25 16N60## Preview

Unable to display preview. Download preview PDF.

## References

- [1]E. Albaş: Generalized derivations on ideals of prime rings. Miskolc Math. Notes
*14*(2013) 3–9.MathSciNetzbMATHGoogle Scholar - [2]S. Ali, S. Huang: On generalized Jordan (α, β)-derivations that act as homomorphisms or anti-homomorphisms. J. Algebra Comput. Appl. (electronic only)
*1*(2011) 13–19.MathSciNetzbMATHGoogle Scholar - [3]N. Argaç, V. De Filippis: Actions of generalized derivations on multilinear polynomials in prime rings. Algebra Colloq.
*18*, Spec. Iss. 1 (2011), 955–964.MathSciNetCrossRefzbMATHGoogle Scholar - [4]A. Asma, N. Rehman, A. Shakir: On Lie ideals with derivations as homomorphisms and anti-homomorphisms. Acta Math. Hungar
*101*(2003) 79–82.MathSciNetCrossRefzbMATHGoogle Scholar - [5]H.E. Bell, L.C. Kappe: Rings in which derivations satisfy certain algebraic conditions. Acta Math. Hung.
*53*(1989) 339–346.MathSciNetCrossRefzbMATHGoogle Scholar - [6]J. Bergen, I.N. Herstein, J.W. Keer: Lie ideals and derivations of prime rings. J. Algebra
*71*(1981) 259–267.MathSciNetCrossRefzbMATHGoogle Scholar - [7]L. Carini, V. De Filippis, G. Scudo: Identities with product of generalized derivations of prime rings. Algebra Colloq.
*20*(2013) 711–720.MathSciNetCrossRefzbMATHGoogle Scholar - [8]C.-L. Chuang: The additive subgroup generated by a polynomial. Isr. J. Math.
*59*(1987) 98–106.MathSciNetCrossRefzbMATHGoogle Scholar - [9]C.-L. Chuang: GPIs having coefficients in Utumi quotient rings. Proc. Am. Math. Soc.
*103*(1988) 723–728.MathSciNetCrossRefzbMATHGoogle Scholar - [10]V. De Filippis: Generalized derivations as Jordan homomorphisms on Lie ideals and right ideals. Acta Math. Sin., Engl. Ser.
*25*(2009) 1965–1974.MathSciNetCrossRefzbMATHGoogle Scholar - [11]V. De Filippis, O.M. Di Vincenzo: Vanishing derivations and centralizers of generalized derivations on multilinear polynomials. Commun. Algebra
*40*(2012) 1918–1932.MathSciNetCrossRefzbMATHGoogle Scholar - [12]V. De Filippis, G. Scudo: Generalized derivations which extend the concept of Jordan homomorphism. Publ. Math.
*86*(2015) 187–212.MathSciNetzbMATHGoogle Scholar - [13]B. Dhara: Derivations with Engel conditions on multilinear polynomials in prime rings. Demonstr. Math.
*42*(2009) 467–478.MathSciNetzbMATHGoogle Scholar - [14]B. Dhara: Generalized derivations acting as a homomorphism or anti-homomorphism in semiprime rings. Beitr. Algebra Geom.
*53*(2012) 203–209.MathSciNetCrossRefzbMATHGoogle Scholar - [15]B. Dhara, S. Huang, A. Pattanayak: Generalized derivations and multilinear polynomials in prime rings. Bull. Malays. Math. Sci. Soc.
*36*(2013) 1071–1081.MathSciNetzbMATHGoogle Scholar - [16]B. Dhara, N.U. Rehman, M.A. Raza: Lie ideals and action of generalized derivations in rings. Miskolc Math. Notes
*16*(2015) 769–779.MathSciNetCrossRefzbMATHGoogle Scholar - [17]B. Dhara, S. Sahebi, V. Rehmani: Generalized derivations as a generalization of Jordan homomorphisms acting on Lie ideals and right ideals. Math. Slovaca
*65*(2015) 963–974.MathSciNetCrossRefzbMATHGoogle Scholar - [18]T. S. Erickson, W. S. Martindale III, J.M. Osborn: Prime nonassociative algebras. Pac. J. Math.
*60*(1975) 49–63.MathSciNetCrossRefzbMATHGoogle Scholar - [19]I. Gusić: A note on generalized derivations of prime rings. Glas. Mat., III. Ser.
*40*(2005) 47–49.MathSciNetCrossRefzbMATHGoogle Scholar - [20]N. Jacobson: Structure of Rings. American Mathematical Society Colloquium Publications 37, Revised edition American Mathematical Society, Providence, 1956.Google Scholar
- [21]V.K. Kharchenko: Differential identities of prime rings. Algebra Logic
*17*(1978) 155–168. (In English. Russian original.); translation from Algebra Logika*17*(1978), 220–238.MathSciNetCrossRefzbMATHGoogle Scholar - [22]C. Lanski: Differential identities, Lie ideals, and Posner’s theorems. Pac. J. Math.
*134*(1988) 275–297.MathSciNetCrossRefzbMATHGoogle Scholar - [23]C. Lanski: An Engel condition with derivation. Proc. Am. Math. Soc.
*118*(1993) 731–734.MathSciNetCrossRefzbMATHGoogle Scholar - [24]T.-K. Lee: Semiprime rings with differential identities. Bull. Inst. Math., Acad. Sin.
*20*(1992) 27–38.MathSciNetzbMATHGoogle Scholar - [25]T.-K. Lee: Generalized derivations of left faithful rings. Commun. Algebra
*27*(1999) 4057–4073.MathSciNetCrossRefzbMATHGoogle Scholar - [26]P.-H. Lee, T.-K. Lee: Derivations with Engel conditions on multilinear polynomials. Proc. Am. Math. Soc.
*124*(1996) 2625–2629.MathSciNetCrossRefzbMATHGoogle Scholar - [27]U. Leron: Nil and power central polynomials in rings. Trans. Am. Math. Soc.
*202*(1975) 97–103.MathSciNetCrossRefzbMATHGoogle Scholar - [28]W. S. Martindale III: Prime rings satisfying a generalized polynomial identity. J. Algebra
*12*(1969) 576–584.MathSciNetCrossRefzbMATHGoogle Scholar - [29]E.C. Posner: Derivations in prime rings. Proc. Am. Math. Soc.
*8*(1957) 1093–1100.MathSciNetCrossRefzbMATHGoogle Scholar - [30]N.U. Rehman: On generalized derivations as homomorphisms and anti-homomorphisms. Glas. Mat., III. Ser.
*39*(2004) 27–30.MathSciNetCrossRefzbMATHGoogle Scholar - [31]Y. Wang, H. You: Derivations as homomorphisms or anti-homomorphisms on Lie ideals. Acta Math. Sin., Engl. Ser.
*23*(2007) 1149–1152.MathSciNetCrossRefzbMATHGoogle Scholar

## Copyright information

© Institute of Mathematics of the Academy of Sciences of the Czech Republic, Praha, Czech Republic 2017