Abstract
A special type of Jacobi matrices, discrete Schrödinger operators, is found to play an important role in quantum physics. In this paper, we show that given the spectrum of a discrete Schrödinger operator and the spectrum of the operator obtained by deleting the first row and the first column of it can determine the discrete Schrödinger operator uniquely, even though one eigenvalue of the latter is missing. Moreover, we find the forms of the discrete Schrödinger operators when their smallest and largest eigenvalues attain the extrema under certain constraints by use of the notion of generalized directional derivative and the method of Lagrange multiplier.
This is a preview of subscription content, access via your institution.
References
- [1]
Z. S. Agranovich, V. A. Marchenko: The Inverse Problem of Scattering Theory. Gordon and Breach, New York, 1963.
- [2]
P. W. Anderson: Absence of diffusion in certain random lattices. Phys. Rev. 109 (1958), 1492–1505.
- [3]
A. Astrauskas: Extremal theory for spectrum of random discrete Schrödinger operator. III. Localization properties. J. Stat. Phys. 150 (2013), 889–907.
- [4]
G. Borg: Eine Umkehrung der Sturm-Liouvilleschen Eigenwertaufgabe: Bestimmung der Differentialgleichung durch die Eigenwerte. Acta Math. 78 (1946), 1–96. (In German.)
- [5]
D. Damanik, D. Hundertmark, R. Killip, B. Simon: Variational estimates for discrete Schrödinger operators with potentials of indefinite sign. Commun. Math. Phys. 238 (2003), 545–562.
- [6]
I. M. Gel’fand, B. M. Levitan: On the determination of a differential equation from its spectral function. Am. Math. Soc., Transl., II. Ser. 1 (1955), 253–304.
- [7]
F. Gesztesy, B. Simon: m-functions and inverse spectral analysis for finite and semi-infinite Jacobi matrices. J. Anal. Math. 73 (1997), 267–297.
- [8]
G. M. L. Gladwell: Inverse Problems in Vibrations. Mechanics: Dynamical Systems 9. Martinus Nijhoff Publishers, Dordrecht, 1986.
- [9]
G. H. Hardy, J. E. Littlewood, G. Pólya: Inequalities. Cambridge University Press, Cambridge, 1952.
- [10]
H. Hochstadt: On some inverse problems in matrix theory. Arch. Math. 18 (1967), 201–207.
- [11]
H. Hochstadt: The inverse Sturm-Liouville problem. Commun. Pure Appl. Math. 26 (1973), 715–729.
- [12]
N. Levinson: The inverse Sturm-Liouville problem. Mat. Tidsskr. B 1949 (1949), 25–30.
- [13]
B. M. Levitan: Inverse Sturm-Liouville Problem. VNU Science Press, Utrecht, 1987.
- [14]
B. M. Levitan, M. G. Gasymov: Determination of a differential equation by two of its spectra. Russ. Math. Surv. 19 (1964), 1–63; translation from Usp. Mat. Nauk 19 (1964), 1–63.
- [15]
D. E. Pelinovsky, A. Stefanov: On the spectral theory and dispersive estimates for a discrete Schrödinger equation in one dimension. J. Math. Phys. 49 (2008), Article ID 113501, 17 pages.
- [16]
J. Pöschel, E. Trubowitz: Inverse Spectral Theory. Pure and Applied Mathematics 130. Academic Press, Boston, 1987.
Author information
Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Chan, CH., Huang, PC. On Spectral Problems of Discrete Schrödinger Operators. Appl Math (2021). https://doi.org/10.21136/AM.2021.0203-19
Received:
Published:
Keywords
- discrete Schrödinger operator
MSC 2020
- 34B09