Abstract
We consider two static problems which describe the contact between a piezoelectric body and an obstacle, the so-called foundation. The constitutive relation of the material is assumed to be electro-elastic and involves the nonlinear elastic constitutive Hencky’s law. In the first problem, the contact is assumed to be frictionless, and the foundation is nonconductive, while in the second it is supposed to be frictional, and the foundation is electrically conductive. The contact is modeled with the normal compliance condition with finite penetration, the regularized Coulomb law, and the regularized electrical conductivity condition. The existence and uniqueness results are provided using the theory of variational inequalities and Schauder’s fixed-point theorem. We also prove that the solution of the latter problem converges towards that of the former as the friction and electrical conductivity coefficients converge towards zero. The numerical solutions of the problems are achieved by using a successive iteration technique; their convergence is also established. The numerical treatment of the contact condition is realized using an Augmented Lagrangian type formulation that leads us to use Uzawa type algorithms. Numerical experiments are performed to show that the numerical results are consistent with the theoretical analysis.
This is a preview of subscription content, access via your institution.
References
- [1]
M. Barboteu, M. Sofonea: Analysis and numerical approach of a piezoelectric contact problem. Ann. Acad. Rom. Sci., Math. Appl. 1 (2009), 7–30.
- [2]
M. Barboteu, M. Sofonea: Solvability of a dynamic contact problem between a piezoelectric body and a conductive foundation. Appl. Math. Comput. 215 (2009), 2978–2991.
- [3]
E.-H. Benkhira, R. Fakhar, Y. Mandyly: Analysis and numerical approximation of a contact problem involving nonlinear Hencky-type materials with nonlocal Coulomb’s friction law. Numer. Funct. Anal. Optim. 40 (2019), 1291–1314.
- [4]
H. Brézis: Équations et inéquations non linéaires dans les espaces vectoriels en dualité. Ann. Inst. Fourier 18 (1968), 115–175. (In French.)
- [5]
E.-H. Essoufi, E.-H. Benkhira, R. Fakhar: Analysis and numerical approximation of an electro-elastic frictional contact problem. Adv. Appl. Math. Mech. 2 (2010), 355–378.
- [6]
E.-H. Essoufi, R. Fakhar, J. Koko: A decomposition method for a unilateral contact problem with Tresca friction arising in electro-elastostatics. Numer. Funct. Anal. Optim. 36 (2015), 1533–1558.
- [7]
W. Han: A Posteriori Error Analysis Via Duality Theory. With Applications in Modeling and Numerical Approximations. Advances in Mechanics and Mathematics 8, Springer, New York, 2005.
- [8]
J. Haslinger, R. Mäkinen: Shape optimization of elasto-plastic bodies under plane strains: Sensitivity analysis and numerical implementation. Struct. Optim. 4 (1992), 133–141.
- [9]
Z. Lerguet, M. Shillor, M. Sofonea: A frictional contact problem for an electroviscoelastic body. Electron. J. Differ. Equ. 2007 (2007), Paper No. 170, 16 pages.
- [10]
Y. Ouafik: Contribution à l’étude mathématique et numérique des structures piézoélectriques encontact. Ph.D. Dissertation, Perpignan University, Perpignan, 2007. Available at https://tel.archives-ouvertes.fr/tel-00192884. (In French.)
Author information
Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Benkhira, EH., Fakhar, R. & Mandyly, Y. A Convergence Result and Numerical Study for a Nonlinear Piezoelectric Material in a Frictional Contact Process with a Conductive Foundation. Appl Math 66, 87–113 (2021). https://doi.org/10.21136/AM.2020.0195-19
Received:
Published:
Issue Date:
Keywords
- piezoelectric body
- nonlinear elastic constitutive Hencky’s law
- normal compliance contact condition
- Coulomb’s friction law
- iteration method
- augmented Lagrangian
- Uzawa block relaxation
MSC 2020
- 35J87
- 74C05
- 49J40
- 47J25
- 74S05
- 65N55
- 37M05