Skip to main content
Log in

Nonuniqueness of implicit lattice Nagumo equation

  • Published:
Applications of Mathematics Aims and scope Submit manuscript

Abstract

We consider the implicit discretization of Nagumo equation on finite lattices and show that its variational formulation corresponds in various parameter settings to convex, mountain-pass or saddle-point geometries. Consequently, we are able to derive conditions under which the implicit discretization yields multiple solutions. Interestingly, for certain parameters we show nonuniqueness for arbitrarily small discretization steps. Finally, we provide a simple example showing that the nonuniqueness can lead to complex dynamics in which the number of bounded solutions grows exponentially in time iterations, which in turn implies infinite number of global trajectories.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G. Allaire, S. M. Kaber: Numerical Linear Algebra. Texts in Applied Mathematics 55, Springer, New York, 2008.

    Google Scholar 

  2. L. J. S. Allen: Persistence, extinction, and critical patch number for island populations. J. Math. Biol. 24 (1987), 617–625.

    Article  MathSciNet  MATH  Google Scholar 

  3. A. Ambrosetti, P. H. Rabinowitz: Dual variational methods in critical point theory and applications. J. Funct. Anal. 14 (1973), 349–381.

    Article  MathSciNet  MATH  Google Scholar 

  4. D. G. Aronson, H. F. Weinberger: Nonlinear diffusion in population genetics, combustion, and nerve pulse propagation. Partial Differential Equations and Related Topics 1974. Lecture Notes in Mathematics 446, Springer, Berlin, 1975, pp. 5–49.

    Chapter  Google Scholar 

  5. S.-N. Chow, J. Mallet-Paret, W. Shen: Traveling waves in lattice dynamical systems. J. Differ. Equations 149 (1998), 248–291.

    Article  MathSciNet  MATH  Google Scholar 

  6. S.-N. Chow, W. X. Shen: Dynamics in a discrete Nagumo equation: Spatial topological chaos. SIAM J. Appl. Math. 55 (1995), 1764–1781.

    Article  MathSciNet  MATH  Google Scholar 

  7. L. O. Chua, L. Yang: Cellular neural networks: applications. IEEE Trans. Circuits Syst. 35 (1988), 1273–1290.

    Article  MathSciNet  Google Scholar 

  8. D. C. Clark: A variant of the Lusternik-Schnirelman theory. Indiana Univ. Math. J. 22 (1972), 65–74.

    Article  MathSciNet  MATH  Google Scholar 

  9. P. Drábek, J. Milota: Methods of Nonlinear Analysis. Applications to Differential Equations. Birkhäuser Advanced Texts Basler Lehrbücher, Springer, Basel, 2013.

    Google Scholar 

  10. P. C. Fife, J. B. McLeod: The approach of solutions of nonlinear diffusion equations to travelling front solutions. Arch. Ration. Mech. Anal. 65 (1977), 335–361.

    Article  MathSciNet  MATH  Google Scholar 

  11. M. Galewski, J. Smejda: On variational methods for nonlinear difference equations. J. Comput. Appl. Math. 233 (2010), 2985–2993.

    Article  MathSciNet  MATH  Google Scholar 

  12. H. J. Hupkes, E. S. Van Vleck: Negative diffusion and traveling waves in high dimensional lattice systems. SIAM J. Math. Anal. 45 (2013), 1068–1135.

    Article  MathSciNet  MATH  Google Scholar 

  13. H. J. Hupkes, E. S. Van Vleck: Travelling waves for complete discretizations of reaction diffusion systems. J. Dyn. Differ. Equations 28 (2016), 955–1006.

    Article  MathSciNet  MATH  Google Scholar 

  14. J. P. Keener: Propagation and its failure in coupled systems of discrete excitable cells. SIAM J. Appl. Math. 47 (1987), 556–572.

    Article  MathSciNet  MATH  Google Scholar 

  15. J. Mallet-Paret: The global structure of traveling waves in spatially discrete dynamical systems. J. Dyn. Differ. Equations 11 (1999), 49–127.

    Article  MathSciNet  MATH  Google Scholar 

  16. G. Molica Bisci, D. Repovš: On some variational algebraic problems. Adv. Nonlinear Anal. 2 (2013), 127–146.

    MathSciNet  MATH  Google Scholar 

  17. J. Nagumo, S. Arimoto, S. Yoshizawa: An active pulse transmission line simulating nerve axon. Proc. IRE 50 (1962), 2061–2070.

    Article  Google Scholar 

  18. J. Otta, P. Stehlík: Multiplicity of solutions for discrete problems with double-well potentials. Electron. J. Differ. Equ. 2013 (2013), 14 pages.

    Article  MathSciNet  MATH  Google Scholar 

  19. C. Pötzsche: Geometric Theory of Discrete Nonautonomous Dynamical Systems. Lecture Notes in Mathematics 2002, Springer, Berlin, 2010.

    Book  MATH  Google Scholar 

  20. P. H. Rabinowitz: Some minimax theorems and applications to nonlinear partial differential equations. Nonlinear Analysis. Academic Press, New York, 1978, pp. 161–177.

    Google Scholar 

  21. P. H. Rabinowitz: Minimax Methods in Critical Point Theory with Applications to Differential Equations. CBMS Regional Conference Series in Mathematics 65, American Mathematical Society, Providence, 1986.

    Book  MATH  Google Scholar 

  22. A. Slavík: Invariant regions for systems of lattice reaction-diffusion equations. J. Differ. Equations 263 (2017), 7601–7626.

    Article  MathSciNet  MATH  Google Scholar 

  23. A. Slavík, P. Stehlík: Dynamic diffusion-type equations on discrete-space domains. J. Math. Anal. Appl. 427 (2015), 525–545.

    Article  MathSciNet  MATH  Google Scholar 

  24. P. Stehlík: Exponential number of stationary solutions for Nagumo equations on graphs. J. Math. Anal. Appl. 455 (2017), 1749–1764.

    Article  MathSciNet  MATH  Google Scholar 

  25. P. Stehlík, J. Volek: Maximum principles for discrete and semidiscrete reaction-diffusion equation. Discrete Dyn. Nat. Soc. 2015 (2015), Article ID 791304, 13 pages.

    Article  MathSciNet  Google Scholar 

  26. P. Stehlík, J. Volek: Variational methods and implicit discrete Nagumo equation. J. Math. Anal. Appl. 438 (2016), 643–656.

    Article  MathSciNet  MATH  Google Scholar 

  27. J. Volek: Landesman-Lazer conditions for difference equations involving sublinear perturbations. J. Difference Equ. Appl. 22 (2016), 1698–1719.

    Article  MathSciNet  MATH  Google Scholar 

  28. J. Volek: Multiple critical points of saddle geometry functionals. Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 170 (2018), 238–257.

    Article  MathSciNet  MATH  Google Scholar 

  29. B. Zinner: Existence of traveling wavefront solutions for the discrete Nagumo equation. J. Differ. Equations 96 (1992), 1–27.

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge discussions with Christian Pötzsche and Pavel Krejčí which led to the questions asked in this paper. They are also thankful for valuable suggestions of both referees and especially those of editor Tomáš Vejchodský.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Petr Stehlík or Jonáš Volek.

Additional information

This publication was supported by the project LO1506 of the Czech Ministry of Education, Youth and Sports under the program NPU I.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Stehlík, P., Volek, J. Nonuniqueness of implicit lattice Nagumo equation. Appl Math 64, 169–194 (2019). https://doi.org/10.21136/AM.2019.0270-18

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.21136/AM.2019.0270-18

Keywords

MSC 2010

Navigation