Skip to main content
Log in

Theoretical foundation of the weighted laplace inpainting problem

  • Published:
Applications of Mathematics Aims and scope Submit manuscript

Abstract

Laplace interpolation is a popular approach in image inpainting using partial differential equations. The classic approach considers the Laplace equation with mixed boundary conditions. Recently a more general formulation has been proposed, where the differential operator consists of a point-wise convex combination of the Laplacian and the known image data. We provide the first detailed analysis on existence and uniqueness of solutions for the arising mixed boundary value problem. Our approach considers the corresponding weak formulation and aims at using the Theorem of Lax-Milgram to assert the existence of a solution. To this end we have to resort to weighted Sobolev spaces. Our analysis shows that solutions do not exist unconditionally. The weights need some regularity and must fulfil certain growth conditions. The results from this work complement findings which were previously only available for a discrete setup.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. K. Atkinson, W. Han: Theoretical Numerical Analysis. A Functional Analysis Framework. Texts in Applied Mathematics 39, Springer, Berlin, 2009.

  2. A. Azzam, E. Kreyszig: On solutions of elliptic equations satisfying mixed boundary conditions. SIAM J. Math. Anal. 13 (1982), 254–262.

    Article  MathSciNet  MATH  Google Scholar 

  3. Z. Belhachmi, D. Bucur, B. Burgeth, J. Weickert: How to choose interpolation data in images. SIAM J. Appl. Math. 70 (2009), 333–352.

    Article  MathSciNet  MATH  Google Scholar 

  4. M. Bertalmío, G. Sapiro, V. Caselles, C. Ballester: Image inpainting. Proc. 27th Annual Conf. Computer Graphics and Interactive Techniques. ACM Press/Addison-Wesley Publishing Company, New York, 2000, pp. 417–424.

    Google Scholar 

  5. M. I. G. Bloor, M. J. Wilson: Generating blend surfaces using partial differential equations. Comput.-Aided Des. 21 (1989), 165–171.

    Article  MATH  Google Scholar 

  6. K. Bredies: A variational weak weighted derivative: Sobolev spaces and degenerate elliptic equations. Available at https://doi.org/imsc.uni-graz.at/bredies/publications_de.html (2008).

    Google Scholar 

  7. R. Brown: The mixed problem for Laplace’s equation in a class of Lipschitz domains. Commun. Partial Differ. Equations 19 (1994), 1217–1233.

    Article  MathSciNet  MATH  Google Scholar 

  8. R. S. Cantrell, C. Cosner: Spatial Ecology via Reaction-Diffusion Equations. Wiley Series in Mathematical and Computational Biology, Wiley, Chichester, 2003.

    Google Scholar 

  9. V. Caselles, J.-M. Morel, C. Sbert: An axiomatic approach to image interpolation. IEEE Trans. Image Process. 7 (1998), 376–386.

    Article  MathSciNet  MATH  Google Scholar 

  10. J. Chabrowski: The Dirichlet Problem with L2 Boundary Data for Elliptic Linear Equations. Lecture Notes in Mathematics 1482, Springer, Berlin, 1991.

  11. T. F. Chan, S. H. Kang: Error analysis for image inpainting. J. Math. Imaging Vis. 26 (2006), 85–103.

    Article  MathSciNet  Google Scholar 

  12. T. F. Chan, J. Shen: Mathematical models for local non-texture inpaintings. SIAM J. Appl. Math. 62 (2002), 1019–1043.

    Article  MATH  Google Scholar 

  13. I. K. Crain: Computer interpolation and contouring of two-dimensional data: A review. Geoexploration 8 (1970), 71–86.

    Article  Google Scholar 

  14. G. Dal Maso, U. Mosco: Wiener’s criterion and G-convergence. Appl. Math. Optimization 15 (1987), 15–63.

    Article  MathSciNet  MATH  Google Scholar 

  15. D. E. Edmunds, B. Opic: Weighted Poincaré and Friedrichs inequalities. J. Lon. Math. Soc., II. Ser. 47 (1993), 79–96.

    Article  MATH  Google Scholar 

  16. A. Ern, J.-L. Guermond: Theory and Practice of Finite Elements. Applied Mathematical Sciences 159, Springer, New York, 2004.

  17. G. Fichera: Analisi esistenziale per le soluzioni dei problemi al contorno misti, relativi all’equazione e ai sistemi di equazioni del secondo ordine di tipo ellittico, autoaggiunti. Ann. Sc. Norm. Super. Pisa, Sci. Fis. Mat., III. Ser. 1 (1949), 75–100. (In Italian.)

    MathSciNet  MATH  Google Scholar 

  18. I. Galić, J. Weickert, M. Welk, A. Bruhn, A. Belyaev, H.-P. Seidel: Towards PDE-based image compression. Variational, Geometric, and Level Set Methods in Computer Vision (N. Paragios et al., eds.). Lecture Notes in Computer Science 3752, Springer, Berlin, 2005, pp. 37–48.

    Google Scholar 

  19. I. Galić, J. Weickert, M. Welk, A. Bruhn, A. Belyaev, H.-P. Seidel: Image compression with anisotropic diffusion. J. Math. Imaging Vis. 31 (2008), 255–269.

    Article  MathSciNet  MATH  Google Scholar 

  20. V. Gol’dshtein, A. Ukhlov: Weighted Sobolev spaces and embedding theorems. Trans. Am. Math. Soc. 361 (2009), 3829–3850.

    Article  MathSciNet  MATH  Google Scholar 

  21. C. Guillemot, O. Le Meur: Image inpainting: Overview and recent advances. IEEE Signal Processing Magazine 31 (2014), 127–144.

    Article  Google Scholar 

  22. L. Hoeltgen: Optimal interpolation data for image reconstructions. Ph. D. Thesis, Saarland University, Saarbrücken, 2014.

    Google Scholar 

  23. L. Hoeltgen: Understanding image inpainting with the help of the Helmholtz equation. Math. Sci., Springer 11 (2017), 73–77.

    Article  MathSciNet  MATH  Google Scholar 

  24. L. Hoeltgen, I. Harris, M. Breuß, and A. Kleefeld: Analytic existence and uniqueness results for PDE-based image reconstruction with the Laplacian. International Conference on Scale Space and Variational Methods in Computer Vision (F. Lauze et al., eds.). Lecture Notes in Computer Science 10302, Springer, Cham, 2017, pp. 66–79.

    Google Scholar 

  25. L. Hoeltgen, M. Mainberger, S. Hoffmann, J. Weickert, C. H. Tang, S. Setzer, D. Johannsen, F. Neumann, B. Doerr: Optimizing spatial and tonal data for PDE-based inpainting. Variational Methods, In Imaging and Geometric Control (M. Bergounioux et al., eds.). Radon Series on Computational and Applied Mathematics 18, De Gruyter, Berlin, 2017, pp. 35–83.

    Google Scholar 

  26. L. Hoeltgen, S. Setzer, J. Weickert: An optimal control approach to find sparse data for Laplace interpolation. Energy Minimization Methods in Computer Vision and Pattern Recognition (A. Heyden et al., eds.). Lecture Notes in Computer Science 8081, Springer, Berlin, 2013, pp. 151–164.

    Google Scholar 

  27. L. Hoeltgen, J. Weickert: Why does non-binary mask optimisation work for diffusion-based image compression? Energy Minimization Methods in Computer Vision and Pattern Recognition (X.-C. Tai et al., eds.). Lecture Notes in Computer Science 8932, Springer, Cham, 2015, pp. 85–98.

    Google Scholar 

  28. A. Kufner: Weighted Sobolev Spaces. Teubner-Texte zur Mathematik 31, BSB B. G. Teubner Verlagsgesellschaft, Leipzig, 1980.

  29. A. Kufner, B. Opic: The Dirichlet problem and weighted spaces. I. Cas. Pest. Mat. 108 (1983), 381–408.

    MathSciNet  MATH  Google Scholar 

  30. A. Kufner, B. Opic: How to define reasonably weighted Sobolev spaces. Commentat. Math. Univ. Carol. 25 (1984), 537–554.

    MathSciNet  MATH  Google Scholar 

  31. A. Kufner, B. Opic: Some remarks on the definition of weighted Sobolev spaces. Partial Differential Equations, 1983. “Nauka” Sibirsk. Otdel, Novosibirsk, 1986, pp. 119–126. (In Russian.)

    Google Scholar 

  32. A. Kufner, B. Opic: The Dirichlet problem and weighted spaces. II. Cas. Pestování Mat. 111 (1986), 242–253.

    MathSciNet  MATH  Google Scholar 

  33. A. Kufner, A.-M. Sändig: Some Applications of Weighted Sobolev Spaces. Teubner-Texte zur Mathematik 100, BSB B. G. Teubner Verlagsgesellschaft, Leipzig, 1987.

  34. M. Mainberger, A. Bruhn, J. Weickert, S. Forchhammer: Edge-based compression of cartoon-like images with homogeneous diffusion. Pattern Recognition 44 (2011), 1859–1873.

    Article  Google Scholar 

  35. M. Mainberger, S. Hoffmann, J. Weickert, C. H. Tang, D. Johannsen, F. Neumann, B. Doerr: Optimising spatial and tonal data for homogeneous diffusion inpainting. Scale Space and Variational Methods in Computer Vision (A. M. Bruckstein et al., eds.). Lecture Notes in Computer Science 6667, Springer, Berlin, 2012, pp. 26–37.

    Google Scholar 

  36. B. Martinet: Régularisation d’inéquations variationnelles par approximations successives. Rev. Franç. Inform. Rech. Opér. 4 (1970), 154–158. (In French.)

    MATH  Google Scholar 

  37. S. Masnou, J.-M. Morel: Level lines based disocclusion. Proceedings 1998 International Conference on Image Processing. ICIP98. IEEE, 2002, pp. 259–263.

    Google Scholar 

  38. C. Miranda: Sul problema misto per le equazioni lineari ellittiche. Ann. Mat. Pura Appl., IV. Ser. 39 (1955), 279–303. (In Italian.)

    Article  MathSciNet  MATH  Google Scholar 

  39. R. H. Nochetto, E. Otárola, A. J. Salgado: Piecewise polynomial interpolation in Muckenhoupt weighted Sobolev spaces and applications. Numer. Math. 132 (2016), 85–130.

    Article  MathSciNet  MATH  Google Scholar 

  40. A. A. Noma, M. G. Misulia: Programming topographic maps for automatic terrain model construction. Surveying and Mapping 19 (1959), 355–366.

    Google Scholar 

  41. O. A. Oleĭnik, E. V. Radkevic: Second-Order Equations with Nonnegative Characteristic Form. American Mathematical Society, Providence, 1973.

    Google Scholar 

  42. B. Opic, A. Kufner: Hardy-type Inequalities. Pitman Research Notes in Mathematics 219, Longman Scientific & Technical, Harlow; John Wiley & Sons, New York, 1990.

    Google Scholar 

  43. P. Peter, S. Hoffmann, F. Nedwed, L. Hoeltgen, J. Weickert: Evaluating the true potential of diffusion-based inpainting in a compression context. Signal Processing: Image Communication 46 (2016), 40–53.

    Google Scholar 

  44. P. Peter, S. Hoffmann, F. Nedwed, L. Hoeltgen, J. Weickert: From optimised inpainting with linear PDEs towards competitive image compression codecs. Image and Video Technology (T. Bräunl et al., eds.). Lecture Notes in Computer Science 9431, Springer, Cham, 2016, pp. 63–74.

    Google Scholar 

  45. W. H. Press, S. A. Teukolsky, W. T. Vetterling, B. P. Flannery: Numerical Recipes in C++. The Art of Scientific Computing. Cambridge University Press, Cambridge, 2002.

    Google Scholar 

  46. E. T. Sawyer, R. L. Wheeden: Degenerate Sobolev spaces and regularity of subelliptic equations. Trans. Am. Math. Soc. 362 (2010), 1869–1906.

    Article  MathSciNet  MATH  Google Scholar 

  47. C. Schmaltz, J. Weickert, A. Bruhn: Beating the quality of JPEG 2000 with anisotropic diffusion. Pattern Recognition (J. Denzler et al., eds.). Lecture Notes in Computer Science 5748, Springer, Berlin, 2009, pp. 452–461.

    Google Scholar 

  48. C.-B. Schönlieb: Partial Differential Equation Methods for Image Inpainting. Cambridge Monographs on Applied and Computational Mathematics 29, Cambridge University Press, Cambridge, 2015.

  49. C. Solomon, T. Breckon: Fundamentals of Digital Image Processing. A Practical Approach with Examples in Matlab. Wiley-Blackwell, Chichester, 2014.

    Google Scholar 

  50. B. O. Turesson: Nonlinear Potential Theory and Weighted Sobolev Spaces. Lecture Notes in Mathematics 1736, Springer, Berlin, 2000.

  51. M. I. Višik, V. V. Grušin: Boundary value problems for elliptic equations degenerate on the boundary of a domain. Math. USSR, Sb. 9 (1969), 423–454.

    Article  Google Scholar 

  52. W. Wang, J. Sun, Z. Zheng: Poincaré inequalities in weighted Sobolev spaces. Appl. Math. Mech., Engl. Ed. 27 (2006), 125–132.

    Article  MATH  Google Scholar 

  53. A. Weber: The USC-SIPI image database, 2014. Available at https://doi.org/sipi.usc.edu/database/.

    Google Scholar 

  54. S. Zaremba: Sur un problème mixte relatif à l’équation de Laplace. Bulletin international de l’Académie des sciences de Cracovie (1910), 313–344. (In French.)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Laurent Hoeltgen, Andreas Kleefeld, Isaac Harris or Michael Breuss.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hoeltgen, L., Kleefeld, A., Harris, I. et al. Theoretical foundation of the weighted laplace inpainting problem. Appl Math 64, 281–300 (2019). https://doi.org/10.21136/AM.2019.0206-18

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.21136/AM.2019.0206-18

Keywords

MSC 2010

Navigation