Skip to main content
Log in

Computing Discrete Convolutions with Verified Accuracy Via Banach Algebras and the FFT

  • Published:
Applications of Mathematics Aims and scope Submit manuscript

Abstract

We introduce a method to compute rigorous component-wise enclosures of discrete convolutions using the fast Fourier transform, the properties of Banach algebras, and interval arithmetic. The purpose of this new approach is to improve the implementation and the applicability of computer-assisted proofs performed in weighed ℓ1 Banach algebras of Fourier/Chebyshev sequences, whose norms are known to be numerically unstable. We introduce some application examples, in particular a rigorous aposteriori error analysis for a steady state in the quintic Swift-Hohenberg PDE.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. P. Boyd: Chebyshev and Fourier Spectral Methods. Dover Publications, Mineola, 2001.

    MATH  Google Scholar 

  2. E. Brigham: Fast Fourier Transform and Its Applications. Prentice Hall, Upper Saddle River, 1988.

    Google Scholar 

  3. J. Cyranka: Efficient and generic algorithm for rigorous integration forward in time of dPDEs. I. J. Sci. Comput. 59 (2014), 28–52.

    Article  MathSciNet  MATH  Google Scholar 

  4. S. Day, Y. Hiraoka, K. Mischaikow, T. Ogawa: Rigorous numerics for global dynamics: a study of the Swift-Hohenberg equation. SIAM J. Appl. Dyn. Syst. 4 (2005), 1–31.

    Article  MathSciNet  MATH  Google Scholar 

  5. S. Day, O. Junge, K. Mischaikow: A rigorous numerical method for the global analysis of infinite-dimensional discrete dynamical systems. SIAM J. Appl. Dyn. Syst. 3 (2004), 117–160.

    Article  MathSciNet  MATH  Google Scholar 

  6. S. Day, W. D. Kalies: Rigorous computation of the global dynamics of integrodifference equations with smooth nonlinearities. SIAM J. Numer. Anal. 51 (2013), 2957–2983.

    Article  MathSciNet  MATH  Google Scholar 

  7. S. Day, J.-P. Lessard, K. Mischaikow: Validated continuation for equilibria of PDEs. SIAM J. Numer. Anal. 45 (2007), 1398–1424.

    Article  MathSciNet  MATH  Google Scholar 

  8. J.-L. Figueras, R. de la Llave: Numerical computations and computer assisted proofs of periodic orbits of the Kuramoto-Sivashinsky equation. SIAM J. Appl. Dyn. Syst. 16 (2017), 834–852.

    Article  MathSciNet  MATH  Google Scholar 

  9. J.-L. Figueras, A. Haro, A. Luque: Rigorous computer-assisted application of KAM the-ory: a modern approach. Found. Comput. Math. 17 (2017), 1123–1193.

    Article  MathSciNet  MATH  Google Scholar 

  10. M. Gameiro, J.-P. Lessard: Analytic estimates and rigorous continuation for equilibria of higher-dimensional PDEs. J. Differ. Equations 249 (2010), 2237–2268.

    Article  MathSciNet  MATH  Google Scholar 

  11. M. Gameiro, J.-P. Lessard, K. Mischaikow: Validated continuation over large parameter ranges for equilibria of PDEs. Math. Comput. Simul. 79 (2008), 1368–1382.

    Article  MathSciNet  MATH  Google Scholar 

  12. M. Gameiro, J.-P. Lessard, Y. Ricaud: Rigorous numerics for piecewise-smooth systems: a functional analytic approach based on Chebyshev series. J. Comput. Appl. Math. 292 (2016), 654–673.

    Article  MathSciNet  MATH  Google Scholar 

  13. Y. Hiraoka, T. Ogawa: Rigorous numerics for localized patterns to the quintic Swift-Hohenberg equation. Japan J. Ind. Appl. Math. 22 (2005), 57–75.

    Article  MathSciNet  MATH  Google Scholar 

  14. Y. Hiraoka, T. Ogawa: An efficient estimate based on FFT in topological verification method. J. Comput. Appl. Math. 199 (2007), 238–244.

    Article  MathSciNet  MATH  Google Scholar 

  15. A. Hungria, J.-P. Lessard, J. D. Mireles James: Rigorous numerics for analytic solutions of differential equations: the radii polynomial approach. Math. Comput. 85 (2016), 1427–1459.

    Article  MathSciNet  MATH  Google Scholar 

  16. H. Koch, A. Schenkel, P. Wittwer: Computer-assisted proofs in analysis and program-ming in logic: A case study. SIAM Rev. 38 (1996), 565–604.

    Article  MathSciNet  MATH  Google Scholar 

  17. J.-P. Lessard, J. D. Mireles James, J. Ransford: Automatic differentiation for Fourier series and the radii polynomial approach. Physica D 334 (2016), 174–186.

    Article  MathSciNet  Google Scholar 

  18. J.-P. Lessard, C. Reinhardt: Rigorous numerics for nonlinear differential equations using Chebyshev series. SIAM J. Numer. Anal. 52 (2014), 1–22.

    Article  MathSciNet  MATH  Google Scholar 

  19. J. D. Mireles James, K. Mischaikow: Computational proofs in dynamics. Encyclopedia of Applied and Computational Mathematics (B. Engquist, ed. ). Springer, Berlin, 2015.

    Google Scholar 

  20. R. E. Moore: Interval Analysis. Prentice-Hall, Englewood Cliffs, 1966.

    Google Scholar 

  21. M. T. Nakao: Numerical verification methods for solutions of ordinary and partial dif-ferential equations. Numer. Funct. Anal. Optimization 22 (2001), 321–356.

    Article  MathSciNet  Google Scholar 

  22. S. M. Rump: INTLAB-INTerval LABoratory. Developments in Reliable Computing (T. Csendes, ed. ). Kluwer Academic Publishers, Dordrecht, 1999, pp. 77–104. Available at https://doi.org/www.ti3.tu-harburg.de/rump/intlab/.

  23. S. M. Rump: Verification methods: rigorous results using floating-point arithmetic. Acta Numerica 19 (2010), 287–449.

    Article  MathSciNet  MATH  Google Scholar 

  24. H. Sakaguchi, H. R. Brand: Stable localized solutions of arbitrary length for the quintic Swift-Hohenberg equation. Physica D 97 (1996), 274–285.

    Article  Google Scholar 

  25. W. Tucker: Validated Numerics. A Short Introduction to Rigorous Computations. Princeton University Press, Princeton, 2011.

    MATH  Google Scholar 

  26. J. B. van den Berg, C. M. Groothedde, J.-P. Lessard: A general method for computer-assisted proofs of periodic solutions in delay differential problems. Preprint (2018).

    Google Scholar 

  27. J. B. van denBerg, J.-P. Lessard: Rigorous numerics in dynamics. Notices Am. Math. Soc. 62 (2015), 1057–1061.

    Article  MathSciNet  MATH  Google Scholar 

  28. J. B. van denBerg, J. F. Williams: Validation of the bifurcation diagram in the 2D Ohta-Kawasaki problem. Nonlinearity 30 (2017), 1584–1638.

    Article  MathSciNet  MATH  Google Scholar 

  29. C. F. Van Loan: Computational Frameworks for the Fast Fourier Transform. Frontiers in Applied Mathematics 10, SIAM, Philadelphia, 1992.

    Book  MATH  Google Scholar 

  30. D. Wilczak, P. Zgliczynski: Heteroclinic connections between periodic orbits in planar restricted circular three-body problem—a computer-assisted proof. Commun. Math. Phys. 234 (2003), 37–75.

    Article  MathSciNet  MATH  Google Scholar 

  31. P. Zgliczyński: Rigorous numerics for dissipative PDEs. III: An effective algorithm for rigorous integration of dissipative PDEs. Topol. Methods Nonlinear Anal. 36 (2010), 197–262.

    MATH  Google Scholar 

  32. P. Zgliczyński, K. Mischaikow: Rigorous numerics for partial differential equations: The Kuramoto-Sivashinsky equation. Found. Comput. Math. 1 (2001), 255–288.

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jean-Philippe Lessard.

Additional information

Dedicated to the 50th birthday of Sergey Korotov

The research has been supported by NSERC.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lessard, JP. Computing Discrete Convolutions with Verified Accuracy Via Banach Algebras and the FFT. Appl Math 63, 219–235 (2018). https://doi.org/10.21136/AM.2018.0082-18

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.21136/AM.2018.0082-18

Keywords

MSC 2010

Navigation