Strict Mittag-Leffler Conditions and Locally Split Morphisms

Article

Abstract

In this paper, we prove that any pure submodule of a strict Mittag-Leffler module is a locally split submodule. As applications, we discuss some relations between locally split monomorphisms and locally split epimorphisms and give a partial answer to the open problem whether Gorenstein projective modules are Ding projective.

Keywords

strict Mittag-Leffler condition locally split morphism Gorenstein projective module Ding projective module 

MSC 2010

13D02 13D07 13E05 16D10 16D80 16D90 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    L. Angeleri Hügel, S. Bazzoni, D. Herbera: A solution to the Baer splitting problem. Trans. Am. Math. Soc. 360 (2008), 2409–2421.MathSciNetCrossRefMATHGoogle Scholar
  2. [2]
    L. Angeleri Hügel, D. Herbera: Mittag-Leffler conditions on modules. Indiana Univ. Math. J. 57 (2008), 2459–2517.MathSciNetCrossRefMATHGoogle Scholar
  3. [3]
    G. Azumaya: Locally pure-projective modules. Azumaya Algebras, Actions, and Modules. Proc. Conf., Bloomington 1990, Contemp. Math. 124, Am. Math. Soc., Providence, 1992, pp. 17–22.Google Scholar
  4. [4]
    S. Bazzoni, D. Herbera: One dimensional tilting modules are of finite type. Algebr. Represent. Theory 11 (2008), 43–61.MathSciNetCrossRefMATHGoogle Scholar
  5. [5]
    S. Bazzoni, J. Šťovíček: All tilting modules are of finite type. Proc. Am. Math. Soc. 135 (2007), 3771–3781.MathSciNetCrossRefMATHGoogle Scholar
  6. [6]
    D. Bennis, N. Mahdou: Strongly Gorenstein projective, injective, and flat modules. J. Pure Appl. Algebra 210 (2007), 437–445.MathSciNetCrossRefMATHGoogle Scholar
  7. [7]
    S. U. Chase: Direct products of modules. Trans. Am. Math. Soc. 97 (1960), 457–473.MathSciNetCrossRefMATHGoogle Scholar
  8. [8]
    N. Ding, Y. Li, L. Mao: Strongly Gorenstein flat modules. J. Aust. Math. Soc. 86 (2009), 323–338.MathSciNetCrossRefMATHGoogle Scholar
  9. [9]
    I. Emmanouil: On certain cohomological invariants of groups. Adv. Math. 225 (2010), 3446–3462.MathSciNetCrossRefMATHGoogle Scholar
  10. [10]
    I. Emmanouil, O. Talelli: On the flat length of injective modules. J. Lond. Math. Soc., II. Ser. 84 (2011), 408–432.MathSciNetCrossRefMATHGoogle Scholar
  11. [11]
    E. E. Enochs, O. M. G. Jenda: Relative Homological Algebra. De Gruyter Expositions in Mathematics 30, Walter de Gruyter, Berlin, 2000.CrossRefMATHGoogle Scholar
  12. [12]
    J. Gillespie: Model structures on modules over Ding-Chen rings. Homology Homotopy Appl. 12 (2010), 61–73.MathSciNetCrossRefMATHGoogle Scholar
  13. [13]
    A. Grothendieck: Techniques de construction et théorèmes d’existence en géométrie algébrique. III. Préschemas quotients. Sém. Bourbaki, Vol. 6, 1960–1961. Soc. Math. France, Paris, 1995, pp. 99–118. (In French.)Google Scholar
  14. [14]
    D. Herbera, J. Trlifaj: Almost free modules and Mittag-Leffler conditions. Adv. Math. 229 (2012), 3436–3467.MathSciNetCrossRefMATHGoogle Scholar
  15. [15]
    M. Raynaud, L. Gruson: Critères de platitude et de projectivité. Techniques de “platification” d’un module. Invent. Math. 13 (1971), 1–89. (In French.)MathSciNetCrossRefMATHGoogle Scholar
  16. [16]
    W. Zimmermann: On locally pure-injective modules. J. Pure Appl. Algebra 166 (2002), 337–357.MathSciNetCrossRefMATHGoogle Scholar

Copyright information

© Institute of Mathematics of the Academy of Sciences of the Czech Republic, Praha, Czech Republic 2018

Authors and Affiliations

  1. 1.Department of MathematicsTaizhou UniversityTaizhouChina
  2. 2.School of Information TechnologyNanjing Xiaozhuang UniversityJiangning, NanjingChina

Personalised recommendations