Czechoslovak Mathematical Journal

, Volume 69, Issue 1, pp 275–293 | Cite as

Universal Central Extension of Direct Limits of Hom-Lie Algebras

  • Valiollah KhaliliEmail author


We prove that the universal central extension of a direct limit of perfect Hom- Lie algebras \((\mathcal{L_i,\;\alpha_{\mathcal{L}_i}})\) is (isomorphic to) the direct limit of universal central extensions of \((\mathcal{L_i,\;\alpha_{\mathcal{L}_i}})\). As an application we provide the universal central extensions of some multi-plicative Hom-Lie algebras. More precisely, we consider a family of multiplicative Hom-Lie algebras {(slk\((\mathcal{A})\), αk)}k∈I and describe the universal central extension of its direct limit.


Hom-Lie algebra extension of Hom-Lie algebras and its direct limit 


17A30 17B55 17B60 17B99 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    B. Alison, G. Benkart, Y. Gao: Central extensions of Lie algebras graded by finite root systems. Math. Ann. 316 (2000), 499–527.MathSciNetCrossRefzbMATHGoogle Scholar
  2. [2]
    F. Ammar, Z. Ejbehi, A. Makhlouf: Cohomology and deformations of Hom-algebras. J. Lie Theory 24 (2011), 813–836.MathSciNetzbMATHGoogle Scholar
  3. [3]
    F. Ammar, S. Mobrouk, A. Makhlouf: Representations and cohomology of n-ary multi-plicative Hom-Nambu-Lie algebras. J. Geom. Phys. 61 (2011), 1898–1913.MathSciNetCrossRefzbMATHGoogle Scholar
  4. [4]
    M. J. Aragón Periñán, A. J. Calderón Martín: On graded matrix Hom-algebras. Elec-tron. J. Linear Algebra 24 (2012), 45–65.MathSciNetzbMATHGoogle Scholar
  5. [5]
    D. Arnal, W. Bakbrahem, A. Makhlouf: Quadratic and Pinczon algebras. Available at https://arxiv. org/pdf/1603. 00435.Google Scholar
  6. [6]
    S. Azam, G. Behbodi, M. Yousofzadeh: Direct union of Lie tori (realization of locally extended affine Lie algebras). Commun. Algebra 44 (2016), 5309–5341.MathSciNetCrossRefzbMATHGoogle Scholar
  7. [7]
    S. Benayadi, A. Makhlouf: Hom-Lie algebras with symmetric invariant nondegenerate bilinear forms. J. Geom. Phys. 76 (2014), 38–60.MathSciNetCrossRefzbMATHGoogle Scholar
  8. [8]
    S. Bloch: The dilogarithm and extensions of Lie algebras. Algebra K-Theory, 1980. Lecture Notes in Math. 854 Springer, Berlin, 1981, pp. 1–23.Google Scholar
  9. [9]
    N. Bourbaki: Éléments de mathématique. Algèbre. Chapitres 1 à 3. Hermann, Paris, 1970. (In French.)zbMATHGoogle Scholar
  10. [10]
    J. M. Casas, M. A. Insua, N. Pacheco: On universal central extensions of Hom-Lie alge-bras. Hacet. J. Math Stat. 44 (2015), 277–288.MathSciNetzbMATHGoogle Scholar
  11. [11]
    Y. Cheng, Y. Su: (Co)homology and universal central extension of Hom-Leibniz algebras. Acta Math. Sin., Engl. Ser. 27 (2011), 813–830.MathSciNetzbMATHGoogle Scholar
  12. [12]
    Y. Cheng, Y. Su: Quantum deformations of the Heisenberg-Virasoro algebra. Algebra Colloq. 20 (2013), 299–308.MathSciNetCrossRefzbMATHGoogle Scholar
  13. [13]
    Y. Frégier, A. Gohr, S. D. Silvestrov: Unital algebras of Hom-associative type and sur-jective or injective twistings. J. Gen. Lie Theory Appl. 3 (2009), 285–295.MathSciNetCrossRefzbMATHGoogle Scholar
  14. [14]
    Y. Gao, S. Shang: Universal coverings of Steinberg Lie algebras of small characteristic. J. Algebra. 311 (2007), 216–230.MathSciNetCrossRefzbMATHGoogle Scholar
  15. [15]
    J. T. Hartwig, D. Larsson, S. D. Silvestrov: Deformations of Lie algebras using-deriva-tions. J. Algebra 295 (2006), 314–361.MathSciNetCrossRefzbMATHGoogle Scholar
  16. [16]
    Q. Jin, X. Li: Hom-Lie algebra structures on semi-simple Lie algebras. J. Algebra 319 (2008), 1398–1408.MathSciNetCrossRefzbMATHGoogle Scholar
  17. [17]
    C. Kassel, J.-L. Loday: Central extensions of Lie algebras. Ann. Inst. Fourier 32 (1982), 119–142. (In French.)CrossRefzbMATHGoogle Scholar
  18. [18]
    V. Khalili: On universal coverings of Lie tori. Bull. Korean Math. Soc. 49 (2012), 1199–1211.MathSciNetCrossRefzbMATHGoogle Scholar
  19. [19]
    X. Li: Representations of 3-dimensional simple multiplicative Hom-Lie algebras. Adv. Math. Phys. 2013, Article ID 938901, 7 pages.Google Scholar
  20. [20]
    A. Makhlouf, S. Silvestrov: Hom-algebra structures. J. Gen. Lie Theory Appl. 2 (2008), 51–64.MathSciNetCrossRefzbMATHGoogle Scholar
  21. [21]
    A. Makhlouf, S. Silvestrov: Notes on 1-parameter formal deformations of Hom-associative and Hom-Lie algebras. Forum Math. 22 (2010), 715–739.MathSciNetCrossRefzbMATHGoogle Scholar
  22. [22]
    R. V. Moody, A. Pianzola: Lie Algebras with Triangular Decompositions. Canadian Mathematical Society Series of Monographs and Advanced Texts, John Wiley & Sons, New York, 1995.Google Scholar
  23. [23]
    K.-H. Neeb: Universal central extensions of Lie groups. Acts Appl. Math. 73 (2002), 175–219.MathSciNetCrossRefzbMATHGoogle Scholar
  24. [24]
    E. Neher: An introduction to universal central extensions of Lie superalgebras. Groups, Rings, Lie and Hopf Algebras, 2001 (Y. Bahturin, ed.). Math. Appl. 555, Kluwer Aca-demic Publishers, Dordrecht, 2003, pp. 141–166.zbMATHGoogle Scholar
  25. [25]
    E. Neher, J. Sun: Universal central extensions of direct limits of Lie superalgebras. J. Al-gebra 368 (2012), 169–181.MathSciNetCrossRefzbMATHGoogle Scholar
  26. [26]
    Y. Sheng: Representations of Hom-Lie algebras. Alger. Represent. Theory 15 (2012), 1081–1098.MathSciNetCrossRefzbMATHGoogle Scholar
  27. [27]
    W. L. J. van der Kallen: Infinitesimally Central Extensions of Chevalley Groups. Lecture Notes in Mathematics 356, Springer, Berlin, 1973.CrossRefzbMATHGoogle Scholar
  28. [28]
    C. A. Weibel: An Introduction to Homological Algebra. Cambridge Studies in Advanced Mathematics 38, Cambridge University Press, Cambridge, 1994.CrossRefGoogle Scholar
  29. [29]
    D. Yau: Enveloping algebras of Hom-Lie algebras. J. Gen. Lie Theory Appl. 2 (2008), 95–108.MathSciNetCrossRefzbMATHGoogle Scholar
  30. [30]
    D. Yau: Hom-algebras and homology. J. Lie Theory 19 (2009), 409–421.MathSciNetzbMATHGoogle Scholar

Copyright information

© Institute of Mathematics of the Academy of Sciences of the Czech Republic, Praha, Czech Republic 2018

Authors and Affiliations

  1. 1.Department of Mathematics, Faculty of ScienceArak UniversityArakIran

Personalised recommendations