Advertisement

Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

A Recovery-Based a Posteriori Error Estimator for the Generalized Stokes Problem

Abstract

A recovery-based a posteriori error estimator for the generalized Stokes problem is established based on the stabilized P1P0 (linear/constant) finite element method. The reliability and efficiency of the error estimator are shown. Through theoretical analysis and numerical tests, it is revealed that the estimator is useful and efficient for the generalized Stokes problem.

This is a preview of subscription content, log in to check access.

References

  1. [1]

    R. Araya, G. R. Barrenechea, A. Poza: An adaptive stabilized finite element method for the generalized Stokes problem. J. Comput. Appl. Math. 214 (2008), 457–479.

  2. [2]

    I. Babuška, W. C. Rheinboldt: A-posteriori error estimates for the finite element method. Int. J. Numer. Methods Eng. 12 (1978), 1597–1615.

  3. [3]

    R. E. Bank, B. D. Welfert: A comparison between the mini-element and the Petrov-Galerkin formulations for the generalized Stokes problem. Comput. Methods Appl. Mech. Eng. 83 (1990), 61–68.

  4. [4]

    G. R. Barrenechea, F. Valentin: An unusual stabilized finite element method for a generalized Stokes problem. Numer. Math. 92 (2002), 653–677.

  5. [5]

    T. P. Barrios, R. Bustinza, G. C. García, E. Hernández: On stabilized mixed methods for generalized Stokes problem based on the velocity-pseudostress formulation: A priori error estimates. Comput. Methods Appl. Mech. Eng. 237–240 (2012), 78–87.

  6. [6]

    C. Bernardi, R. Verfürth: Adaptive finite element methods for elliptic equations with non-smooth coefficients. Numer. Math. 85 (2000), 579–608.

  7. [7]

    P. B. Bochev, C. R. Dohrmann, M. D. Gunzburger: Stabilization of low-order mixed finite elements for the Stokes equations. SIAM J. Numer. Anal. 44 (2006), 82–101.

  8. [8]

    E. Burman, P. Hansbo: Edge stabilization for the generalized Stokes problem: A continuous interior penalty method. Comput. Methods Appl. Mech. Eng. 195 (2006), 2393–2410.

  9. [9]

    R. Bustinza, G. N. Gatica, M. González: A mixed finite element method for the generalized Stokes problem. Int. J. Numer. Methods Fluids 49 (2005), 877–903.

  10. [10]

    C. Carstensen: Some remarks on the history and future of averaging techniques in a posteriori finite element error analysis. ZAMM, Z. Angew. Math. Mech. 84 (2004), 3–21.

  11. [11]

    C. Carstensen, S. A. Funken: A posteriori error control in low-order finite element discretisations of incompressible stationary flow problems. Math. Comput. 70 (2001), 1353–1381.

  12. [12]

    C. Carstensen, R. Verfürth: Edge residuals dominate a posteriori error estimates for low order finite element methods. SIAM J. Numer. Anal. 36 (1999), 1571–1587.

  13. [13]

    S. H. Chou: Analysis and convergence of a covolume method for the generalized Stokes problem. Math. Comput. 66 (1997), 85–104.

  14. [14]

    Q. Deng, X. Feng: Multigrid methods for the generalized Stokes equations based on mixed finite element methods. J. Comput. Math. 20 (2002), 129–152.

  15. [15]

    H.-Y. Duan, P.-W. Hsieh, R. C. E. Tan, S.-Y. Yang: Analysis of the small viscosity and large reaction coefficient in the computation of the generalized Stokes problem by a novel stabilized finite element method. Comput. Methods Appl. Mech. Eng. 271 (2014), 23–47.

  16. [16]

    C. A. Duarte, J. T. Oden: An h-p adaptive method using clouds. Comput. Methods Appl. Mech. Eng. 139 (1996), 237–262.

  17. [17]

    Y. He, C. Xie, H. Zheng: A posteriori error estimate for stabilized low-order mixed FEM for the Stokes equations. Adv. Appl. Math. Mech. 2 (2010), 798–809.

  18. [18]

    P. Huang, Q. Zhang: A posteriori error estimates for the Stokes eigenvalue problem based on a recovery type estimator. Bull. Math. Soc. Sci. Math. Répub. Soc. Roum., Nouv. Sér. 62 (2019), 295–304.

  19. [19]

    D. Kay, D. Silvester: A posteriori error estimation for stabilized mixed approximations of the Stokes equations. SIAM J. Sci. Comput. 21 (1999), 1321–1336.

  20. [20]

    M. Larin, A. Reusken: A comparative study of efficient iterative solvers for generalized Stokes equations. Numer. Linear Algebra Appl. 15 (2008), 13–34.

  21. [21]

    K. Nafa, A. J. Wathen: Local projection stabilized Galerkin approximations for the generalized Stokes problem. Comput. Methods Appl. Mech. Eng. 198 (2009), 877–883.

  22. [22]

    S. Repin, R. Stenberg: A posteriori error estimates for the generalized Stokes problem. J. Math. Sci., New York 142 (2007), 1828–1843; translation from Probl. Mat. Anal. 34 (2006), 89–101.

  23. [23]

    R. Rodríguez: Some remarks on Zienkiewicz-Zhu estimator. Numer. Methods Partial Differ. Equations 10 (1994), 625–635.

  24. [24]

    L. Song, Y. Hou, Z. Cai: Recovery-based error estimator for stabilized finite element methods for the Stokes equation. Comput. Methods Appl. Mech. Eng. 272 (2014), 1–16.

  25. [25]

    R. Verfürth: A posteriori error estimators for the Stokes equations. Numer. Math. 55 (1989), 309–325.

  26. [26]

    R. Verfürth: A posteriori error estimates for nonlinear problems: Finite element discretizations of elliptic equations. Math. Comput. 62 (1994), 445–475.

  27. [27]

    R. Verfürth: A Review of A Posteriori Error Estimation and Adaptive Mesh-Refinement Techniques. Wiley-Teubner Series Advances in Numerical Mathematics, Wiley, Chichester; Teubner, Stuttgart, 1996.

  28. [28]

    Z. Wang, Z. Chen, J. Li: A stabilized nonconforming quadrilateral finite element method for the generalized Stokes equations. Int. J. Numer. Anal. Model. 9 (2012), 449–457.

  29. [29]

    J. Wang, Y. Wang, X. Ye: A posteriori error estimate for stabilized finite element methods for the Stokes equations. Int. J. Numer. Anal. Model. 9 (2012), 1–16.

  30. [30]

    H. Zheng, Y. Hou, F. Shi: A posteriori error estimates of stabilization of low-order mixed finite elements for incompressible flow. SIAM J. Sci. Comput. 32 (2010), 1346–1360.

  31. [31]

    O. C. Zienkiewicz, J. Z. Zhu: The superconvergent patch recovery and a posteriori error estimates. I: The recovery technique. Int. J. Numer. Methods Eng. 33 (1992), 1331–1364.

  32. [32]

    O. C. Zienkiewicz, J. Z. Zhu: Superconvergence and the superconvergent patch recovery. Finite Elem. Anal. Des. 19 (1995), 11–23.

Download references

Acknowledgements

The authors would like to thank the editor and reviewers for their valuable comments and suggestions which helped us to improve the quality of this paper.

Author information

Correspondence to Pengzhan Huang.

Additional information

The research has been supported by the NSF of China (grant number 11861067).

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Huang, P., Zhang, Q. A Recovery-Based a Posteriori Error Estimator for the Generalized Stokes Problem. Appl Math 65, 23–41 (2020). https://doi.org/10.21136/AM.2020.0319-18

Download citation

Keywords

  • generalized Stokes problem
  • recovery-based error estimator
  • adaptive method
  • finite element method

MSC 2010

  • 65N30
  • 65N50