Advertisement

Applications of Mathematics

, Volume 64, Issue 1, pp 61–73 | Cite as

Dynamics and patterns of an activator-inhibitor model with cubic polynomial source

  • Yanqiu LiEmail author
  • Juncheng Jiang
Article

Abstract

The dynamics of an activator-inhibitor model with general cubic polynomial source is investigated. Without diffusion, we consider the existence, stability and bifurcations of equilibria by both eigenvalue analysis and numerical methods. For the reaction-diffusion system, a Lyapunov functional is proposed to declare the global stability of constant steady states, moreover, the condition related to the activator source leading to Turing instability is obtained in the paper. In addition, taking the production rate of the activator as the bifurcation parameter, we show the decisive effect of each part in the source term on the patterns and the evolutionary process among stripes, spots and mazes. Finally, it is illustrated that weakly linear coupling in the activator-inhibitor model can cause synchronous and anti-phase patterns.

Keywords

activator-inhibitor model cubic polynomial source Turing pattern global stability weakly linear coupling 

MSC 2010

35B32 35B35 35B40 92C15 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    W. Abid, R. Yafia, M. A. Aziz Alaoui, H. Bouhafa, A. Abichou: Instability and pattern formation in three-species food chain model via Holling type II functional response on a circular domain. Int. J. Bifurcation Chaos Appl. Sci. Eng. 25 (2015), Article ID 1550092, 25 pages.Google Scholar
  2. [2]
    K. Antwi-Fordjour, M. Nkashama: Global existence of solutions of the Gierer-Meinhardt system with mixed boundary conditions. Appl. Math., Irvine 8 (2017), 857–867.CrossRefGoogle Scholar
  3. [3]
    M. Bendahmane, R. Ruiz-Baier, C. Tian: Turing pattern dynamics and adaptive dis-cretization for a super-diffusive Lotka-Volterra model. J. Math. Biol. 72 (2016), 1441–1465.MathSciNetCrossRefzbMATHGoogle Scholar
  4. [4]
    D. Bray, C. Thomas: Unpolymerized actin in fibroblasts and brain. J. Mol. Biol. 105 (1976), 527–544.CrossRefGoogle Scholar
  5. [5]
    R. K. Brayton, J. K. Moser: Theory of nonlinear networks. I. Q. Appl. Math. 22 (1964), 1–33.MathSciNetCrossRefzbMATHGoogle Scholar
  6. [6]
    P. Feng: Dynamics and pattern formation in a modified Leslie-Gower model with Allee effect and Bazykin functional response. Int. J. Biomath. 10 (2017), Article ID 1750073, 26 pages.Google Scholar
  7. [7]
    P. Freitas, C. Rocha: Lyapunov functionals and stability for FitzHugh-Nagumo systems. J. Differ. Equations 169 (2001), 208–227.MathSciNetCrossRefzbMATHGoogle Scholar
  8. [8]
    A. Gierrer, H. Meinhardt: A theory of biological pattern formation. Biol. Cybern. 12 (1972), 30–39.Google Scholar
  9. [9]
    S. Henine, A. Youkana: Large-time behaviour and blow up of solutions for Gierer-Meinhardt systems. Math. Methods Appl. Sci. 39 (2016), 570–582.MathSciNetCrossRefzbMATHGoogle Scholar
  10. [10]
    E. W. Justh, P. S. Krishnaprasad: Pattern-forming systems for control of large arrays of actuators. J. Nonlinear Sci. 11 (2001), 239–277.MathSciNetCrossRefzbMATHGoogle Scholar
  11. [11]
    E. W. Justh, P. S. Krishnaprasad: A Lyapunov functional for the cubic nonlinearity activator-inhibitor model equation. Proceedings of the 37th IEEE Conference on Deci-sion and Control, 1998. IEEE Control Systems Society, Piscataway, 2002, pp. 1404–1409.Google Scholar
  12. [12]
    A. J. Koch, H. Meinhardt: Biological pattern formation: from basic mechanisms to com-plex structures. Rev. Mod. Phys. 66 (1994), 1481–1507.CrossRefGoogle Scholar
  13. [13]
    J. Schnakenberg: Simple chemical reaction systems with limit cycle behaviour. J. Theo-ret. Biol. 81 (1979), 389–400.MathSciNetCrossRefGoogle Scholar
  14. [14]
    G.-Q. Sun, C.-H. Wang, Z.-Y. Wu: Pattern dynamics of a Gierer-Meinhardt model with spatial effects. Nonlinear Dyn. 88 (2017), 1385–1396.CrossRefGoogle Scholar
  15. [15]
    A. M. Turing: The chemical basis of morphogenesis. Philos. Trans. R. Soc. Lond, Ser. B, Biol. Sci. 237 (1952), 37–72.MathSciNetzbMATHGoogle Scholar
  16. [16]
    J. Wang, X. Hou, Z. Jing: Stripe and spot patterns in a Gierer-Meinhardt activa-tor-inhibitor model with different sources. Int. J. Bifurcation Chaos Appl. Sci. Eng. 25 (2015), Article ID 1550108, 16 pages.Google Scholar
  17. [17]
    J. Wei, M. Winter: Existence of spikes for the Gierer-Meinhardt system in one dimen-sion. Mathematical Aspects of Pattern Formation in Biological Systems. Applied Math-ematical Sciences 189, Springer, London, 2014, pp. 13–39.Google Scholar
  18. [18]
    J. Wei, M. Winter, W. Yang: Stable spike clusters for the precursor Gierer-Meinhardt system in R2. Calc. Var. Partial Differ. Equ. 56 (2017), 40 pages.CrossRefzbMATHGoogle Scholar
  19. [19]
    R. Wu, Y. Shao, Y. Zhou, L. Chen: Turing and Hopf bifurcation of Gierer-Meinhardt activator-substrate model. Electron. J. Differ. Equ. 2017 (2017), Paper No. 173, 19 pages.Google Scholar
  20. [20]
    R. Yang, Y. Song: Spatial resonance and Turing-Hopf bifurcations in the Gierer-Meinhardt model. Nonlinear Anal., Real World Appl. 31 (2016), 356–387.MathSciNetCrossRefzbMATHGoogle Scholar
  21. [21]
    F. Yi, E. A. Gaffney, S. Seirin-Lee: The bifurcation analysis of Turing pattern formation induced by delay and diffusion in the Schnakenberg system. Discrete Contin. Dyn. Syst., Ser. B 22 (2017), 647–668.MathSciNetzbMATHGoogle Scholar
  22. [22]
    J. Zhou: Bifurcation analysis of a diffusive predator-prey model with ratio-dependent Holling type III functional response. Nonlinear Dyn. 81 (2015), 1535–1552.MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Institute of Mathematics of the Academy of Sciences of the Czech Republic, Praha, Czech Republic 2019

Authors and Affiliations

  1. 1.Nanjing University of TechnologyNanjing, JiangsuChina

Personalised recommendations