Advertisement

Canadian Journal of Public Health

, Volume 109, Issue 1, pp 43–51 | Cite as

Examining the association between area level deprivation and vehicle collisions that result in injury

  • Khrisha B. Alphonsus
  • Cheryl Waldner
  • Daniel Fuller
Quantitative Research
  • 105 Downloads

Abstract

Objective

The objective of this study was to examine the association between area level deprivation and vehicle collisions resulting in either property damage or injury.

Methods

A multilevel observational study was conducted using the 2000 to 2010 Saskatchewan Traffic Accident Information System (TAIS) (n = 72,234) and 2006 Census data at the Dissemination Area level (n = 337) for the city of Saskatoon.

Results

Total area level deprivation was associated with severity of traffic collisions, but the association varied based on time of day and road repair status. Collisions were more likely to result in injury from the most deprived (Q5) versus the least deprived quintile (Q1) at all times of day; the difference was greatest in the evening (OR 1.7, 95% CI 1.3 to 2.3). However, there was no other evidence of a monotonic increase in risk associated with area level deprivation. When there were faded markings or potholes, the odds of a collision involving injury were 2.6 (95% CI 1.5 to 4.4) times greater for the most deprived quintile compared to the least deprived quintile. There were no significant differences in the risk of injury between area level deprivation quintiles when road conditions were good.

Conclusion

While the association between area level deprivation and whether vehicle collisions result in injury in Saskatoon varies based on time of day and road repairs, under many circumstances the most deprived areas report more injuries from collisions compared to the least deprived.

Keywords

Total deprivation Socioeconomic status Vehicle collisions 

Résumé

Objectif

Examiner l’association entre la privation à l’échelle locale et les collisions entre véhicules automobiles causant des dommages matériels ou des blessures.

Méthode

Nous avons mené une étude observationnelle multiniveau à l’aide des données du système d’information sur les accidents de la route de la Saskatchewan (TAIS) de 2000 à 2010 (n = 72 234) et les données du Recensement de 2006 au niveau des aires de diffusion (n = 337) pour la ville de Saskatoon.

Résultats

La privation totale à l’échelle locale était associée à la gravité des collisions de la route, mais cette association variait selon l’heure du jour et l’état de la chaussée. À toute heure du jour, les collisions étaient plus susceptibles de causer des blessures si elles se produisaient dans le quintile le plus défavorisé (Q5) que dans le quintile le moins défavorisé (Q1); l’écart était le plus prononcé en soirée (RC : 1,7, IC de 95%: 1,3 à 2,3). Nous n’avons cependant trouvé aucun autre signe d’augmentation monotone du risque associé à la privation à l’échelle locale. En présence de marquages délavés ou de nids-de-poule, la probabilité d’une collision avec blessés était 2,6 fois plus élevée (IC de 95% : 1,5 à 4,4) dans le quintile le plus défavorisé que dans le quintile le moins défavorisé. Il n’y avait aucun écart significatif dans le risque de blessures selon le quintile de privation à l’échelle locale quand la chaussée était en bon état.

Conclusion

L’association entre la privation à l’échelle locale et la probabilité que les collisions entre véhicules automobiles causent ou non des blessures à Saskatoon varie selon l’heure du jour et l’état de la chaussée, mais dans de nombreuses situations, davantage de blessures dues aux collisions sont signalées dans les quartiers les plus défavorisés que dans les quartiers les moins défavorisés.

Mots-clés

Privation totale Statut socioéconomique Collisions entre véhicules automobiles 

Notes

Compliance with Ethical Standards

Conflict of Interest

The authors declare that they have no conflict of interest.

Supplementary material

41997_2018_36_MOESM1_ESM.pdf (2.5 mb)
ESM 1 (PDF 2571 kb)
41997_2018_36_MOESM2_ESM.docx (19 kb)
ESM 2 (DOCX 19 kb)

References

  1. Ameratunga, S., Hijar, M., & Norton, R. (2006). Road-traffic injuries: confronting disparities to address a global-health problem. Lancet, 367(9521), 1533–1540.  https://doi.org/10.1016/S0140-6736(06)68654-6.CrossRefPubMedGoogle Scholar
  2. Bunn, F., Collier, T., Frost, C., et al. (2009). Area-wide traffic calming for preventing traffic related injuries (Review) Area-wide traffic calming for preventing traffic related injuries. (1), 1–3.  https://doi.org/10.1002/14651858.CD003110.Copyright.
  3. Burrows, S., Auger, N., Gamache, P., & Hamel, D. (2012). Individual and area socioeconomic inequalities in cause-specific unintentional injury mortality: 11-year follow-up study of 2.7 million Canadians. Accident Analysis and Prevention, 45, 99–106.  https://doi.org/10.1016/j.aap.2011.11.010.CrossRefPubMedGoogle Scholar
  4. Cubbin, C., LeClere, F. B., & Smith, G. S. (2000). Socioeconomic status and injury mortality: individual and neighbourhood determinants. Journal of Epidemiology and Community Health, 54(7), 517–524.  https://doi.org/10.1136/jech.54.7.517.CrossRefPubMedPubMedCentralGoogle Scholar
  5. Cubbin, C., & Smith, G. S. (2002). Socioeconomic inequalities in injury: critical issues in design and analysis. Annual Review of Public Health, 23(1), 349–375.  https://doi.org/10.1146/annurev.publhealth.23.100901.140548.CrossRefPubMedGoogle Scholar
  6. Ewing, R., & Dumbaugh, E. (2009). The built environment and traffic safety a review of empirical evidence. Journal of Planning Literature, 23(4), 347–367.CrossRefGoogle Scholar
  7. Farmer, C. M., & Williams, A. F. (2005). Temporal factors in motor vehicle crash deaths. Injury Prevention, 11(1), 18–23.  https://doi.org/10.1136/ip.2004.005439.CrossRefPubMedPubMedCentralGoogle Scholar
  8. Haddon, W. (1980). Advances in the epidemiology of injuries as a basis for public policy. Public Health Report, 95(5), 411–421.  https://doi.org/10.2307/4596353.Google Scholar
  9. Harper, S., Charters, T. J., & Strumpf, E. C. (2015). Trends in socioeconomic inequalities in motor vehicle accident deaths in the United States, 1995–2010. American Journal of Epidemiology, 182(7), 606–614.  https://doi.org/10.1093/aje/kwv099.CrossRefPubMedGoogle Scholar
  10. Jones, A. P., & Jørgensen, S. H. (2003). The use of multilevel models for the prediction of road accident outcomes. Accident Analysis and Prevention, 35(1), 59–69.  https://doi.org/10.1016/S0001-4575(01)00086-0.CrossRefPubMedGoogle Scholar
  11. Laflamme, L., & Engstrom, K. (2002). Socioeconomic differences in Swedish children and adolescents injured in road traffic accidents: cross sectional study. British Medical Journal, 324(February), 396–397.CrossRefPubMedPubMedCentralGoogle Scholar
  12. Laflamme, L., & Stephanie Burrows, M. H. (2009). Socioeconomic differences in injury risks. a Review of Findings and a Discussion of Potential Countermeasures. (January).Google Scholar
  13. Lee, J., Lee, W.-Y., Noh, M., & Khang, Y.-H. (2014). Does a geographical context of deprivation affect differences in injury mortality? A multilevel analysis in South Korean adults residing in metropolitan cities. J Epidemiol Community Health, 68(5), 457–465.  https://doi.org/10.1136/jech-2013-203082.CrossRefPubMedGoogle Scholar
  14. Morency, P., Gauvin, L., Plante, C., Fournier, M., & Morency, C. (2012). Neighborhood social inequalities in road traffic injuries: the influence of traffic volume and road design. American Journal of Public Health, 102(6), 1112–1119.  https://doi.org/10.2105/AJPH.2011.300528.CrossRefPubMedPubMedCentralGoogle Scholar
  15. Neudorf, C., Fuller, D., Cushon, J., Glew, R., Turner, H., & Ugolini, C. (2015). An analytic approach for describing and prioritizing health inequalities at the local level in Canada: a descriptive study. CMAJ Open, 3(4), E366–E372.  https://doi.org/10.9778/cmajo.20150049.CrossRefPubMedPubMedCentralGoogle Scholar
  16. Pallagst, K. (2010). Viewpoint: the planning research agenda: shrinking cities—a challenge for planning cultures. The Town Planning Review, 81(5), i–vi.CrossRefGoogle Scholar
  17. Pampalon, R., Hamel, D., & Gamache, P. (2009b). A comparison of individual and area-based socio-economic data for monitoring social inequalities in health. Heal Reports 20(4), 85–94. http://www.ncbi.nlm.nih.gov/pubmed/20108609. Accessed 23 Jan 2016.
  18. Pampalon, R., Hamel, D., Gamache, P., & Raymond, G. (2009a). A deprivation index for health planning in Canada. Chronic Diseases in Canada 29(4),178–191. http://www.ncbi.nlm.nih.gov/pubmed/19804682. Accessed 23 Jan 2016.
  19. Redelmeier, D. A., & Tien, H. C. (2014). Medical interventions to reduce motor vehicle collisions. CMAJ, 186(2), 118–124.  https://doi.org/10.1503/cmaj.122001.CrossRefPubMedPubMedCentralGoogle Scholar
  20. Rothman, L., Macpherson, A., Buliung, R., et al. (2015). Installation of speed humps and pedestrian-motor vehicle collisions in Toronto, Canada: a quasi-experimental study. BMC Public Health, 15, 774.  https://doi.org/10.1186/s12889-015-2116-4.CrossRefPubMedPubMedCentralGoogle Scholar
  21. Runyan, C. W. (1998). Using the Haddon matrix: introducing the third dimension. Injury Prevention, 4(4), 302–307.  https://doi.org/10.1136/ip.4.4.302.CrossRefPubMedPubMedCentralGoogle Scholar
  22. Spitz, S. (2013). Hospitalizations from car collisions twice as likely during evening. Canadian Medical Association Journal, 185(6), E255–E255.  https://doi.org/10.1503/cmaj.109-4427.CrossRefPubMedPubMedCentralGoogle Scholar
  23. The World Bank Group. GINI index World Bank estimate. http://data.worldbank.org/indicator/SI.POV.GINI?end=2013&locations=US&start=2013&view=map. Published 2016. Accessed 29 Oct 2016.
  24. Toroyan, T. (2009). Global status report on road safety. Injury Prevention, 15(4), 286.  https://doi.org/10.1258/jrsm.2010.090426.CrossRefPubMedGoogle Scholar
  25. Valent, F., Schiava, F., Savonitto, C., Gallo, T., Brusaferro, S., & Barbone, F. (2002). Risk factors for fatal road traffic accidents in Udine, Italy. Accident Analysis and Prevention, 34(1), 71–84.  https://doi.org/10.1016/S0001-4575(00)00104-4.CrossRefPubMedGoogle Scholar
  26. Whitlock, G., Norton, R., Clark, T., Pledger, M., Jackson, R., & MacMahon, S. (2003). Motor vehicle driver injury and socioeconomic status: a cohort study with prospective and retrospective driver injuries. Journal of Epidemiology and Community Health, 57(7), 512–516.  https://doi.org/10.1136/jech.57.7.512.CrossRefPubMedPubMedCentralGoogle Scholar
  27. World Health Organisation. (2004). World report on road traffic injury prevention. World, 244.  https://doi.org/10.1016/j.puhe.2005.09.003.
  28. Zambon, F., & Hasselberg, M. (2006). Socioeconomic differences and motorcycle injuries: age at risk and injury severity among young drivers. A Swedish nationwide cohort study. Accident Analysis and Prevention, 38(6), 1183–1189.  https://doi.org/10.1016/j.aap.2006.05.005.CrossRefPubMedGoogle Scholar
  29. Zwerling, C., Peek-Asa, C., Whitten, P. S., Choi, S.-W., Sprince, N. L., & Jones, M. P. (2005). Fatal motor vehicle crashes in rural and urban areas: decomposing rates into contributing factors. Injury Prevention, 11(1), 24–28.  https://doi.org/10.1136/ip.2004.005959.CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© The Canadian Public Health Association 2018

Authors and Affiliations

  • Khrisha B. Alphonsus
    • 1
  • Cheryl Waldner
    • 1
    • 2
  • Daniel Fuller
    • 3
  1. 1.School of Public HealthUniversity of SaskatchewanSaskatoonCanada
  2. 2.Western College of Veterinary MedicineUniversity of SaskatchewanSaskatoonCanada
  3. 3.Canada Research Chair in Population Physical Activity, School of Human Kinetics and RecreationMemorial University of NewfoundlandSt. John’sCanada

Personalised recommendations