Advertisement

Assessment of the Air Quality Health Index (AQHI) and four alternate AQHI-Plus amendments for wildfire seasons in British Columbia

  • Jiayun Yao
  • Dave M. Stieb
  • Eric Taylor
  • Sarah B. HendersonEmail author
Quantitative Research
  • 4 Downloads

Abstract

Objective

Wildfire smoke is an important source of air pollution associated with a range of cardiopulmonary health conditions. The Air Quality Health Index (AQHI) is the most widely used tool in Canada to communicate with the public about air pollution, but it may not adequately reflect health risks from wildfire smoke. The objective of this study was to evaluate the ability of the AQHI and four alternate AQHI-Plus amendments to predict adverse population health effects from wildfire smoke.

Methods

The maximum 1-h values of the AQHI and the four amendments were calculated for each 48-h period of the wildfire seasons from 2010 to 2017 for 32 health units in British Columbia. Generalized Poisson models were used to estimate the association between these values and daily counts of five health outcomes: all-cause mortality; physician visits for all circulatory causes; visits for all respiratory causes, including asthma; asthma-specific visits; and dispensations of salbutamol sulfate (i.e., Ventolin®). Model fit was evaluated with the Akaike information criterion.

Results

The AQHI and the four amendments were all associated with all five health outcomes. The AQHI exhibited best fit to the all-cause mortality and circulatory physician visits during all wildfire seasons, while the 1-h PM2.5Only AQHI-Plus exhibited best fit to the asthma-related outcomes during all wildfire seasons.

Conclusion

Individuals with common respiratory conditions such as asthma and chronic obstructive pulmonary disease are particularly susceptible to wildfire smoke. As such, the 1-h PM2.5Only AQHI-Plus amendment was recommended for communicating about potential health effects of air quality during wildfire seasons in BC.

Keywords

Wildfire smoke Air quality Asthma Air Quality Health Index (AQHI) 

Résumé

Objectif

La fumée des incendies de forêts est une importante source de pollution atmosphérique associée à un éventail d’états pathologiques cardiopulmonaires. La cote air santé (CAS) est l’outil le plus communément utilisé au Canada pour aviser le public des niveaux de pollution atmosphérique, mais elle pourrait ne pas bien tenir compte des risques pour la santé de la fumée des incendies de forêts. Notre étude visait à évaluer les capacités de la CAS et de quatre indicateurs modifiés (AQUI-Plus, ou « CAS-Plus ») de prédire les effets néfastes de la fumée des incendies de forêts sur la santé des populations.

Méthode

Les valeurs maximales en 1 heure de la CAS et de ses quatre modifications ont été calculées pour chaque période de 48 heures durant les saisons des feux de forêt 2010 à 2017 pour 32 bureaux de santé de la Colombie-Britannique. Des modèles de Poisson généralisés ont servi à estimer les associations entre ces valeurs et le dénombrement quotidien de cinq résultats sanitaires : les décès toutes causes confondues; les visites chez le médecin attribuables à l’ensemble des problèmes circulatoires; les visites attribuables à l’ensemble des problèmes respiratoires, dont l’asthme; les visites spécifiquement attribuables à l’asthme; et la distribution de sulfate de salbutamol (Ventolin®). La qualité du modèle a été évaluée à l’aide du critère d’information d’Akaike.

Résultats

La CAS et ses quatre modifications ont toutes été associées aux cinq résultats sanitaires. La CAS présentait le meilleur ajustement avec les décès toutes causes confondues et les visites chez le médecin attribuables aux problèmes circulatoires durant toutes les saisons de feux de forêt, tandis que l’AQHI-Plus (1-h PM2.5only) présentait le meilleur ajustement avec les résultats liés à l’asthme durant toutes les saisons de feux de forêt.

Conclusion

Les personnes ayant des états pathologiques respiratoires courants comme l’asthme et la maladie pulmonaire obstructive chronique sont particulièrement sensibles à la fumée des incendies de forêts. C’est pourquoi la modification AQHI-Plus 1-h PM2.5Only est recommandée pour communiquer les informations relatives aux effets possibles de la qualité de l’air sur la santé durant la saison des feux de forêt en Colombie-Britannique.

Mots-clés

Fumée d’incendies de forêts Qualité de l’air Asthme Cote air santé (CAS) 

Notes

Funding information

This study was funded by the British Columbia Ministry of Environment and Climate Change Strategy.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflicts of interest.

Supplementary material

41997_2019_237_MOESM1_ESM.docx (258 kb)
ESM 1 (DOCX 258 kb)

References

  1. Breathe Clean Air Comox Valley (2017). Air quality health index concerns http://breathecleanair.ca/wp-content/uploads/2017/09/BCACV-letter-re-AQHI-Concerns.pdf. Accessed 2018-08-14.
  2. Brook, R. D., Rajagopalan, S., Pope, C. A., Brook, J. R., Bhatnagar, A., Diez-Roux, A. V., et al. (2010). Particulate matter air pollution and cardiovascular disease: an update to the scientific statement from the American Heart Association. Circulation, 121(21), 2331–2378.Google Scholar
  3. Burgan, O., Smargiassi, A., Perron, S., & Kosatsky, T. (2010). Cardiovascular effects of sub-daily levels of ambient fine particles: a systematic review. Environ Health, 9(1), 1.Google Scholar
  4. Cakmak, S., Kauri, L., Shutt, R., Liu, L., Green, M. S., Mulholland, M., et al. (2014). The association between ambient air quality and cardiac rate and rhythm in ambulatory subjects. Environ Int, 73, 365–371.Google Scholar
  5. Chen, L., Villeneuve, P. J., Rowe, B. H., Liu, L., & Stieb, D. M. (2014). The Air Quality Health Index as a predictor of emergency department visits for ischemic stroke in Edmonton, Canada. Journal of Exposure Science and Environmental Epidemiology, 24(4), 358.Google Scholar
  6. Dods, P., & Copes, R. (2005). Wood smoke, forest fires and PM2.5 in British Columbia. BC Medical Journal, 47(5), 132–133.Google Scholar
  7. Elliott, C. T., Henderson, S. B., & Wan, V. (2013). Time series analysis of fine particulate matter and asthma reliever dispensations in populations affected by forest fires. Environ Health, 12, 11.  https://doi.org/10.1186/1476-069x-12-11.Google Scholar
  8. Faustini, A., Alessandrini, E. R., Pey, J., Perez, N., Samoli, E., Querol, X., et al. (2015). Short-term effects of particulate matter on mortality during forest fires in southern Europe: results of the MED-PARTICLES Project. Occup Environ Med, 72(5), 323–329.  https://doi.org/10.1136/oemed-2014-102459.Google Scholar
  9. Ghio, A. J. (2008). Mechanism of asthmatic exacerbation by ambient air pollution particles. Expert review of respiratory medicine, 2(1), 109–118.Google Scholar
  10. Government of Canada (2016). Air quality health index. http://www.ec.gc.ca/cas-aqhi/default.asp?Lang=En. Accessed August 23 2016.
  11. Henderson, S. B., Brauer, M., Macnab, Y. C., & Kennedy, S. M. (2011). Three measures of forest fire smoke exposure and their associations with respiratory and cardiovascular health outcomes in a population-based cohort. Environ Health Perspect, 119(9), 1266–1271.  https://doi.org/10.1289/ehp.1002288.Google Scholar
  12. Kelly, A. (2017). Interior B.C. needs better air quality monitoring during wildfires: Kamloops doctors. http://www.cbc.ca/news/canada/british-columbia/interior-b-c-needs-better-air-quality-monitoring-during-wildfires-kamloops-doctors-1.4365457. Accessed 2018-08-15.
  13. Kistler, M., Schmidl, C., Padouvas, E., Giebl, H., Lohninger, J., Ellinger, R., et al. (2012). Odor, gaseous and PM10 emissions from small scale combustion of wood types indigenous to Central Europe. Atmos Environ, 51, 86–93.Google Scholar
  14. Linares, C., Carmona, R., Tobias, A., Miron, I. J., & Diaz, J. (2015). Influence of advections of particulate matter from biomass combustion on specific-cause mortality in Madrid in the period 2004-2009. Environ Sci Pollut Res Int, 22(9), 7012–7019.  https://doi.org/10.1007/s11356-014-3916-2.Google Scholar
  15. Liu, J. C., Pereira, G., Uhl, S. A., Bravo, M. A., & Bell, M. L. (2015). A systematic review of the physical health impacts from non-occupational exposure to wildfire smoke. Environ Res, 136, 120–132.Google Scholar
  16. Martin, K. L., Hanigan, I. C., Morgan, G. G., Henderson, S. B., & Johnston, F. H. (2013). Air pollution from bushfires and their association with hospital admissions in Sydney, Newcastle and Wollongong, Australia 1994-2007. Aust N Z J Public Health, 37(3), 238–243.  https://doi.org/10.1111/1753-6405.12065.Google Scholar
  17. McLean, K. E., Yao, J., & Henderson, S. B. (2015). An evaluation of the British Columbia Asthma Monitoring System (BCAMS) and PM2.5 exposure metrics during the 2014 forest fire season. Int J Environ Res Public Health, 12(6), 6710–6724.  https://doi.org/10.3390/ijerph120606710.Google Scholar
  18. Moore, D., Copes, R., Fisk, R., Joy, R., Chan, K., & Brauer, M. (2006). Population health effects of air quality changes due to forest fires in British Columbia in 2003: estimates from physician-visit billing data. Can J Public Health, 97(2), 105–108.Google Scholar
  19. Naeher, L. P., Brauer, M., Lipsett, M., Zelikoff, J. T., Simpson, C. D., Koenig, J. Q., et al. (2007). Woodsmoke health effects: a review. Inhal Toxicol, 19(1), 67–106.Google Scholar
  20. Provincial Health Services Authority (2019). Comparison to BC: the summary below highlights how your community is doing compared to the provincial average. http://communityhealth.phsa.ca/HealthProfiles/HealthReportComparisonToBC/Trail. Accessed 2019-04-17.
  21. Reid, C. E., Brauer, M., Johnston, F. H., Jerrett, M., Balmes, J. R., & Elliott, C. T. (2016). Critical review of health impacts of wildfire smoke exposure. Environ Health Perspect, 124(9), 1334.Google Scholar
  22. Sheldon, T. L., & Sankaran, C. (2017). The impact of Indonesian forest fires on Singaporean pollution and health. Am Econ Rev, 107(5), 526–529.Google Scholar
  23. Steadman, R. G. (1984). A universal scale of apparent temperature. J Clim Appl Meteorol, 23(12), 1674–1687.Google Scholar
  24. Stieb, D. M., Burnett, R. T., Smith-Doiron, M., Brion, O., Shin, H. H., & Economou, V. (2008). A new multipollutant, no-threshold air quality health index based on short-term associations observed in daily time-series analyses. J Air Waste Manage Assoc, 58(3), 435–450.Google Scholar
  25. Stieb, D. M., Shutt, R., Kauri, L., Mason, S., Chen, L., Szyszkowicz, M., et al. (2017). Cardio-respiratory effects of air pollution in a panel study of outdoor physical activity and health in rural older adults. J Occup Environ Med, 59(4), 356.Google Scholar
  26. Stieb, D. M., Shutt, R., Kauri, L. M., Roth, G., Szyszkowicz, M., Dobbin, N. A., et al. (2018). Cardiorespiratory effects of air pollution in a panel study of winter outdoor physical activity in older adults. J Occup Environ Med, 60(8), 673–682.Google Scholar
  27. Szyszkowicz, M., & Kousha, T. (2014). Emergency department visits for asthma in relation to the air quality health index: a case-crossover study in Windsor, Canada. Canadian Journal of Public Health, 105(5), e336–e341.Google Scholar
  28. Wotton, B. M., Nock, C. A., & Flannigan, M. D. (2010). Forest fire occurrence and climate change in Canada. Int J Wildland Fire, 19(3), 253–271.Google Scholar
  29. Yao, J., Brauer, M., & Henderson, S. B. (2013). Evaluation of a wildfire smoke forecasting system as a tool for public health protection. Environ Health Perspect, 121(10), 1142.Google Scholar
  30. Yao, J., Eyamie, J., & Henderson, S. B. (2016). Evaluation of a spatially resolved forest fire smoke model for population-based epidemiologic exposure assessment. Journal of Exposure Science and Environmental Epidemiology, 26(3), 233.Google Scholar

Copyright information

© The Canadian Public Health Association 2019

Authors and Affiliations

  1. 1.Environmental Health ServicesBritish Columbia Centre for Disease ControlVancouverCanada
  2. 2.Environmental Health Science and Research BureauHealth CanadaVancouverCanada
  3. 3.BC Ministry of Environment and Climate Change StrategyVictoriaCanada

Personalised recommendations