Advertisement

Canadian Journal of Public Health

, Volume 107, Issue 1, pp e81–e87 | Cite as

Prevalence of unexplained anaemia in Inuit men and Inuit post-menopausal women in Northern Labrador: International Polar Year Inuit Health Survey

  • Jennifer A. JamiesonEmail author
  • Hope A. Weiler
  • Harriet V. Kuhnlein
  • Grace M. Egeland
Quantitative Research
  • 1 Downloads

Abstract

OBJECTIVE: To identify correlates of hemoglobin (Hb) and anaemia unexplained by iron deficiency (UA) in Canadian Inuit adults.

METHODS: A cross-sectional survey assessed diet, demographic information, anthropometry, fasting Hb, ferritin, soluble transferrin receptor (on a subset), high-sensitivity C-reactive protein (hs-CRP) in serum, red blood cell (RBC) fatty acid composition, blood lead, and antibodies to Helicobacter pylori in non-pregnant, Inuit adults (n = 2550), ≥18 years of age from randomly selected households in 36 Inuit communities in Inuvialuit Settlement Region, Nunavut Territory and Nunatsiavut of Northern Labrador, Canada.

RESULTS: Hb concentrations were lower and UA prevalence higher in Inuit men after 50 years of age. Rate of anaemia was constant among Inuit women but changed from primarily iron deficiency anaemia pre-menopause, to primarily UA in post-menopause. Low education levels and hs-CRP were associated with increased risk of UA. For Inuit men, % RBC eicosapentaenoic acid (EPA) and elevated blood lead were also associated with increased risk of UA. Frequency of traditional food intake was positively associated with Hb.

CONCLUSION: Age patterns and regional variation of anaemia suggest that ethnicity-related physiological differences cannot explain anaemia prevalence for Inuit. High RBC EPA status, inflammation and infections, and lower education levels may contribute to the prevalence of anaemia in this population, which is not related to iron status. Thus, traditional lifestyle may protect Inuit from nutritional anaemia but contribute to lower Hb through environmental exposures. The clinical significance of UA for older Inuit adults requires further investigation, as the prevalence represents a moderate public health problem.

Key Words

Hemoglobin anaemia indigenous health inflammation nutrition 

Résumé

OBJECTIF: Déterminer les corrélats de l’hémoglobine (Hb) et de l’anémie non expliquée par une carence en fer (anémie inexpliquée) chez les Inuits adultes du Canada.

MÉTHODE: Une enquête transversale a permis d’évaluer le régime, le profil démographique, l’anthropométrie, l’Hb à jeun, la ferritine, le récepteur soluble de la transferrine (sur un sous-ensemble), la protéine C-réactive ultrasensible (hsCRP) sérique, la composition des acides gras érythrocytaires, le taux de plomb dans le sang, et les anticorps à Helicobacter pylori chez les Inuits adultes à l’exception des femmes enceintes (n = 2 550), âgés de ≥18 ans provenant de ménages sélectionnés au hasard dans 36 communautés inuites dans la région désignée des Inuvialuits, au Nunavut et au Nunatsiavut dans le Nordlabrador, au Canada.

RÉSULTATS: Les concentrations en Hb étaient inférieures et la prévalence de l’anémie inexpliquée était supérieure chez les hommes inuits après l’âge de 50 ans. Le taux d’anémie était constant chez les femmes inuites, mais alors qu’avant la ménopause il s’agissait principalement d’anémie ferriprive, après la ménopause, il s’agissait principalement d’anémie inexpliquée. Les faibles niveaux d’instruction et l’hsCRP étaient associés à un risque accru d’anémie inexpliquée. Chez les hommes inuits, les taux élevés d’acide eicosapentanoïque (AEP) érythrocytaire et de plomb dans le sang étaient également associés à un risque accru d’anémie inexpliquée. La fréquence de l’alimentation traditionnelle présentait une association positive avec l’Hb

CONCLUSION: La répartition par âge et les écarts régionaux de l’anémie indiquent que les différences physiologiques liées à l’ethnicité ne peuvent expliquer la prévalence de l’anémie chez les Inuits. L’AEP érythrocytaire, l’inflammation et les infections élevés, ainsi que les faibles niveaux d’instruction, peuvent contribuer à la prévalence de l’anémie dans cette population, prévalence qui n’est pas liée au bilan en fer. Ainsi, le mode de vie traditionnel peut protéger les Inuits contre l’anémie nutritionnelle, mais contribuer à réduire l’Hb par les expositions environnementales. La signification clinique de l’anémie inexpliquée chez les Inuits adultes plus âgés exige une enquête plus poussée, car sa prévalence représente un problème de santé publique modéré.

Mots Clés

hémoglobine anémie santé autochtone inflammation nutrition 

References

  1. 1.
    World Health Organization. Focusing on Anaemia: Towards an Integrated Approach for Effective Anaemia Control. Joint Statement of the World Health Organization and the United Nations Children’s Fund. Geneva: WHO, 2004. Available at: http://www.who.int/nutrition/publications/micronutrients/WHOandUNICEF_statement_anaemia/en/ (Accessed June 17, 2014).Google Scholar
  2. 2.
    Jamieson J, Weiler H, Kuhnlein H, Egeland, GM. Traditional food intake is correlated with iron stores in Canadian Inuit men. J Nutr 2012;142:764–70. PMID: 22378332. doi: 10.3945/jn.111.140475.CrossRefGoogle Scholar
  3. 3.
    Jamieson J, Kuhnlein H, Weiler H, Egeland, GM. Higher n3-fatty acid status is associated with lower risk of iron depletion among food insecure Canadian Inuit women. BMC Public Health 2013;13:289–97. PMID: 23547888. doi: 10.1186/1471-2458-13-289.CrossRefGoogle Scholar
  4. 4.
    Guralnik J, Ershler W, Schrier S, Picozzi V. Anemia in the elderly: A public health crisis in hematology. Hematology. Am Soc Hematol Educ Program 2005; 528–32. PMID: 16304431. doi: 10.1182/asheducation-2005.1.528.Google Scholar
  5. 5.
    Jamieson J, Kuhnlein H. The paradox of anemia with high meat intake: A review of the multifactorial etiology of anemia in the Inuit of North America. Nutr Rev 2008; 66(5):256–71. PMID: 18454812. doi: 10.1111/j.1753-4887.2008.00030.x.CrossRefGoogle Scholar
  6. 6.
    Scott E, Wright R, Hanan B. Anemia in Alaskan Eskimos. J Nutr 1955;55:137–49. PMID: 13234001.CrossRefGoogle Scholar
  7. 7.
    Petersen KM, Parkinson AJ, Nobmann ED, Bulkow L, Yip R, Mockdad A. Iron deficiency anemia among Alaska Natives may be due to fecal loss rather than inadequate intake. J Nutr 1996;126(11):2774–83. PMID: 8914948.PubMedGoogle Scholar
  8. 8.
    Hitchcock, DJ. Parasitological study on the Eskimos in the Bethel area of Alaska. J Parasitol 1950;36(3):232–34. PMID: 15422459. doi: 10.2307/3273150.CrossRefGoogle Scholar
  9. 9.
    Gessner B. Geographic and racial patterns of anemia prevalence among low-income Alaskan children and pregnant or postpartum women limit potential etiologies. J Pediatr Gastroenterol Nutr 2009;48(4):475–81. PMID: 19322058. doi: 10.1097/MPG.0b013e3181888fac.CrossRefGoogle Scholar
  10. 10.
    Milman N, Nyg K, Mulvad G, Pedersen H, Bjerregard P. Haemoglobin concentrations appear to be lower in indigenous Greenlanders than in Danes: Assessment of haemoglobin in 234 Greenlanders and in 2804 Danes. Eur J Haematol 2001;67(1):23–29. PMID: 11553263. doi: 10.1034/j.1600-0609.2001.067001023.x.CrossRefGoogle Scholar
  11. 11.
    Valberg L, Birkett N, Haist J, Zamecnik J, Pelletier O. Evaluation of the body iron status of native Canadians. Can Med Assoc J 1979;120:285–89. PMID: 427665.PubMedPubMedCentralGoogle Scholar
  12. 12.
    Kuhnlein HV, Receveur O, Soueida R, Egeland, GM. Arctic Indigenous Peoples experience the nutrition transition with changing dietary patterns and obesity. J Nutr 2004;134:1447–53. PMID: 15173410.CrossRefGoogle Scholar
  13. 13.
    Egeland G, Pacey A, Cao Z, Sobol I. Food insecurity among Inuit preschoolers: Nunavut Inuit Child Health Survey, 2007–2008. Can Med Assoc J 2010; 182(3):243–48. PMID: 20100848. doi: 10.1503/cmaj.091297.CrossRefGoogle Scholar
  14. 14.
    Saudny H, Leggee D, Egeland G. Design and methods of the adult Inuit health survey 2007–2008. Int J Circumpolar Health 2012;71:19752. PMID: 23166895.CrossRefGoogle Scholar
  15. 15.
    Plante C, Blanchet C, Rochette L, O’Brien H. Prevalence of anemia among Inuit women in Nunavik, Canada. Int J Circumpolar Health 2011; 70(2):154–65. PMID: 21524361. doi: 10.3402/ijch.v70i2.17811.CrossRefGoogle Scholar
  16. 16.
    Kuhnlein H, Receveur O, Soueida R, Berti P. Unique patterns of dietary adequacy in three cultures of Canadian Arctic indigenous peoples. Public Health Nutr 2008; 11(4): 349–60. PMID: 17610753. doi: 10.1017/ S1368980007000353.CrossRefGoogle Scholar
  17. 17.
    Egeland G, Berti P, Soueida R, Arbour L, Receveur O, Kuhnlein, HV. Age differences in vitamin A intake among Canadian Inuit. Can J Public Health 2004; 95(6):465–69. PMID: 15622799. doi: 10.3109/13697137.2010.514366.PubMedGoogle Scholar
  18. 18.
    Mason R. Vitamin D: A hormone for all seasons. Climacteric 2011;14(2):197–203. PMID: 20964549.CrossRefGoogle Scholar
  19. 19.
    Bjerregaard P, Johansen P, Mulvad G, Pedersen HS, Hansen J. Lead sources in human diet in Greenland. Environ Health Perspect 2004;112(15):1496–98. PMID: 15531433. doi: 10.1016/S0269-7491(98)00083-9.CrossRefGoogle Scholar
  20. 20.
    Scheuhammer A, Perrault J, Routhier E, Braune B, Campbell G. Elevated lead concentrations in edible portions of game birds harvested with lead shot. Environ Pollution 1998;102:251–57. doi: 10.1186/1476-069X-7-25.CrossRefGoogle Scholar
  21. 21.
    Fontaine J, Dewailly E, Benedetti J, Pereg D, Ayotte P, Dery S. Re-evaluation of blood mercury, lead and cadmium concentrations in the Inuit population of Nunavik (Québec): A cross-sectional study. Environ Health 2008;7:25–38. PMID: 18518986.CrossRefGoogle Scholar
  22. 22.
    Papanikolaou N, Hatzidaki E, Belivanis S, Tzanakakis G, Tsatsakis A. Lead toxicity update. A brief review. Med Sci Monit 2005;11(10):RA329–36. PMID: 16192916.PubMedGoogle Scholar
  23. 23.
    Miret S, Saiz MP, Mitjavila, MT. Effects of fish oil- and olive oil-rich diets on iron metabolism and oxidative stress in the rat. Br J Nutr 2003;89(1): 11–18. PMID: 12568660. doi: 10.1079/BJN2002737.CrossRefGoogle Scholar
  24. 24.
    Innis S, Kuhnlein, HV. The fatty acid composition of Northern-Canadian marine and terrestrial mammals. Acta Med Scand 1987;222(2):105–9. PMID: 2890267.CrossRefGoogle Scholar
  25. 25.
    Thomson C, Stanaway J, Neuhouser M, Snetselaar L, Stefanick M, Arendell L, Chen Z. Nutrient intake and anemia risk in the women’s health initiative observational study. JAm Diet Assoc 2011;111(4): 532–41. PMID: 21443985. doi: 10.1016/j.jada.2011.01.017.CrossRefGoogle Scholar
  26. 26.
    Tussing-Humphreys L, Braunschweig C. Anemia in postmenopausal women: Dietary inadequacy or nondietary factors? J Am Diet Assoc 2011; 111(4):528–31. PMID: 21443984. doi: 10.1016/j.jada.2011.01.006.CrossRefGoogle Scholar
  27. 27.
    Egeland G, Cao Z, Young T. Hypertriglyceridemic-waist phenotype and glucose intolerance among Canadian Inuit: The International Polar Year Inuit Health Survey for Adults 2007–2008. Can Med Assoc J 2011;183:E553–58. PMID: 21555386. doi: 10.1503/cmaj.101801.CrossRefGoogle Scholar
  28. 28.
    Nestel P. Adjusting Hemoglobin Values in Program Surveys. Washington, DC: International Nutritional Anemia Consultative Group (INACG), 2002. Available at: http://pdf.usaid.gov/pdf_docs/PNACQ927.pdf (Accessed June 17, 2014).Google Scholar
  29. 29.
    Centers for Disease Control and Prevention. Adult Blood Lead Epidemiology and Surveillance–United States, 1998–2001. In: Surveillance Summaries, M.a.M.W. Atlanta, GA: CDC, 2002; p. 1–10. Available at: http://www.cdc.gov/mmwr/preview/mmwrhtml/ss5111a1.htm (Accessed June 17, 2014).Google Scholar
  30. 30.
    El Hayek J, Egeland G, Weiler H. Older age and lower adiposity predict better 25-hydroxy vitamin D concentration in Inuit adults: International Polar Year Inuit Health Survey, 2007–2008. Arch Osteoporosis 2011;6(1–2):167–77. PMID: 22886103. doi: 10.1007/s11657-011-0062-z.CrossRefGoogle Scholar
  31. 31.
    Institute of Medicine. Dietary Reference Intakes for Thiamin, Riboflavin, Niacin, Vitamin B6, Folate, Vitamin B12, Pantothenic Acid, Biotin, and Choline. Washington, DC: National Academy Press, 2000. Available at: http://www.nap.edu/topic/287/food-and-nutrition (Accessed June 17, 2014).Google Scholar
  32. 32.
    World Health Organization. Obesity: Preventing and Managing the Global Epidemic: Report on a WHO Consultation, Geneva: WHO, 2000. Available at: http://www.who.int/nutrition/publications/obesity/WHO_TRS_894/en/ (Accessed June 17, 2014).Google Scholar
  33. 33.
    Cook J, Boy E, Flowers C, Daroca M. The quantitative assessment of body iron. Blood 2003;101(9): 3359–63. PMID: 12521995. doi: 10.1182/blood-2002-10-3071.CrossRefGoogle Scholar
  34. 34.
    Flowers C, Skikne B, Covell A, Cook J. The clinical measurement of serum transferrin receptor. J Lab Clin Med 1989;114:368–77. PMID: 2677198.PubMedGoogle Scholar

Copyright information

© The Canadian Public Health Association 2016

Authors and Affiliations

  • Jennifer A. Jamieson
    • 1
    Email author
  • Hope A. Weiler
    • 2
  • Harriet V. Kuhnlein
    • 2
    • 3
  • Grace M. Egeland
    • 4
  1. 1.Department of Human NutritionSt. Francis Xavier UniversityAntigonishCanada
  2. 2.School of Dietetics and Human NutritionMcGill UniversityMontrealCanada
  3. 3.Centre for Indigenous Peoples’ Nutrition and EnvironmentMcGill UniversityMontrealCanada
  4. 4.Department of Global Public Health and Primary CareUniversity of Bergen & Norwegian Institute of Public HealthBergenNorway

Personalised recommendations