Canadian Journal of Public Health

, Volume 104, Issue 4, pp e348–e350 | Cite as

The Power and Pitfalls of HIV Phylogenetics in Public Health

  • James I. BrooksEmail author
  • Paul A. Sandstrom


Phylogenetics is the application of comparative studies of genetic sequences in order to infer evolutionary relationships among organisms. This tool can be used as a form of molecular epidemiology to enhance traditional population-level communicable disease surveillance. Phylogenetic study has resulted in new paradigms being created in the field of communicable diseases and this commentary aims to provide the reader with an explanation of how phylogenetics can be used in tracking infectious diseases. Special emphasis will be placed upon the application of phylogenetics as a tool to help elucidate HIV transmission patterns and the limitations to these methods when applied to forensic analysis. Understanding infectious disease epidemiology in order to prevent new transmissions is the sine qua non of public health. However, with increasing epidemiological resolution, there may be an associated potential loss of privacy to the individual. It is within this context that we aim to promote the discussion on how to use phylogenetics to achieve important public health goals, while at the same time protecting the rights of the individual.

Key Words

Phylogenetics HIV public health criminalization of HIV molecular epidemiology 


La phylogénie est l’application d’études comparatives de séquences génétiques afin d’inférer des liens évolutionnaires entre des organismes. Cet outil peut être utilisé comme une forme d’épidémiologie moléculaire pour améliorer la surveillance classique des maladies transmissibles dans la population. Des études phylogénétiques ont donné lieu à la création de nouveaux paradigmes dans le domaine des maladies transmissibles, et notre commentaire vise à expliquer l’utilisation possible de la phylogénie pour retracer des maladies infectieuses. Nous insistons surtout sur l’application de la phylogénie en tant qu’outil pour élucider les grandes tendances de transmission du VIH et sur les contraintes de ces méthodes lorsqu’elles sont appliquées à l’analyse médico-légale. En santé publique, il est indispensable de comprendre l’épidémiologie des maladies infectieuses pour prévenir les nouvelles transmissions. Toutefois, l’augmentation de la résolution épidémiologique pourrait s’accompagner d’une perte de confidentialité pour les particuliers. Dans ce contexte, nous voulons lancer un débat sur l’utilisation de la phylogénie pour atteindre d’importants objectifs de santé publique tout en protégeant les droits des particuliers.

Mots Clés

phylogénie VIH santé publique criminalisation du VIH épidémiologie moléculaire 


  1. 1.
    Hall BG, Barlow M. Phylogenetic analysis as a tool in molecular epidemiology of infectious diseases. Ann Epidemiol 2006;16(3):157–69.CrossRefGoogle Scholar
  2. 2.
    Behr M, Warren S, Salamon H, Hopewell P, de Leon AP, Daley C, et al. Transmission of Mycobacterium tuberculosis from patients smear-negative for acid-fast bacilli. Lancet 1999;353(9151):444–49.CrossRefGoogle Scholar
  3. 3.
    Smith GJD, Vijaykrishna D, Bahl J, Lycett SJ, Worobey M, Pybus OG, et al. Origins and evolutionary genomics of the 2009 swine-origin H1N1 influenza A epidemic. Nature 2009;459(7250):1122–25.CrossRefGoogle Scholar
  4. 4.
    Hué S, Clewley JP, Cane PA, Pillay D. HIV-1 pol gene variation is sufficient for reconstruction of transmissions in the era of antiretroviral therapy. AIDS 2004;18(5):719–28.CrossRefGoogle Scholar
  5. 5.
    Brenner BG, Roger M, Routy JP, Moisi D, Ntemgwa M, Matte C, et al. High rates of forward transmission events after acute/early HIV-1 infection. J Infect Dis 2007;195(7):951–59.CrossRefGoogle Scholar
  6. 6.
    Kaye M, Chibo D, Birch C. Phylogenetic investigation of transmission pathways of drug-resistant HIV-1 utilizing pol sequences derived from resistance genotyping. J Acquir Immun Defic Syndr 2008;49(1):9–16.CrossRefGoogle Scholar
  7. 7.
    Pillay D, Rambaut A, Geretti AM, Brown AJL. HIV phylogenetics. BMJ 2007;335(7618):460–61.CrossRefGoogle Scholar
  8. 8.
    Bernard EJ, Azad Y, Vandamme AM, Weait M, Geretti, AM. HIV forensics: Pitfalls and acceptable standards in the use of phylogenetic analysis as evidence in criminal investigations of HIV transmission. HIV Med 2007;8(6):382- 87.Google Scholar
  9. 9.
    Brown AE, Murphy G, Rinck G, Clewley JP, Hill C, Parry JV, et al. Implications for HIV testing policy derived from combining data on voluntary confidential testing with viral sequences and serological analyses. Sex Transm Infect 2009;85:4–9.CrossRefGoogle Scholar
  10. 10.
    Poon AFY, McGovern RA, Mo T, Knapp DJHF, Brenner B, Routy JP, et al. Dates of HIV infection can be estimated for seroprevalent patients by coalescent analysis of serial next-generation sequencing data. AIDS 2011;25(16):2019–26.CrossRefGoogle Scholar
  11. 11.
    Brumme ZL, John M, Carlson JM, Brumme CJ, Chan D, Brockman MA, et al. HLA-associated immune escape pathways in HIV-1 subtype B Gag, Pol and Nef proteins. PLOS ONE 2009;4(8):e6687.Google Scholar
  12. 12.
    Hecht FM, Wolf LE, Lo B. Lessons from an HIV transmission pair. J Infect Dis 2007;195(9):1239–41.CrossRefGoogle Scholar

Copyright information

© The Canadian Public Health Association 2013

Authors and Affiliations

  1. 1.National HIV & Retrovirology LaboratoryNational Microbiology Laboratory, Public Health Agency of CanadaOttawaCanada
  2. 2.Department of MedicineUniversity of OttawaOttawaCanada

Personalised recommendations