Advertisement

Canadian Journal of Public Health

, Volume 108, Issue 5–6, pp e523–e529 | Cite as

Proximity to two main sources of industrial outdoor air pollution and emergency department visits for childhood asthma in Edmonton, Canada

  • Laura A. Rodriguez-VillamizarEmail author
  • Rhonda J. Rosychuk
  • Alvaro Osornio-Vargas
  • Paul J. Villeneuve
  • Brian H. Rowe
Quantitative Research

Abstract

OBJECTIVE: Children are recognized to be more susceptible than healthy adults to the effects of air pollution; however, relatively few Canadian studies of children have focused on industrial emissions. We conducted a spatial cross-sectional study to explore associations between emergency department (ED) visits for childhood asthma and residential proximity to two industrial sources of air pollution (coal-fired power plant and petrochemical industry) in Edmonton, Canada.

METHODS: Using administrative health care data for Alberta between 2004 and 2010, we conducted a spatial analysis of disease clusters of count data around these two industrial sources. The distance from children’s place of residence to these industrial sources was determined by using the six-character postal code from the children’s ED visit. Clusters of cases were identified at the census dissemination area. Negative binomial multivariable spatial regression was used to estimate the risks of clusters in relation to the distance to these industrial sources.

RESULTS: The relative risk of ED visits for asthma, calculated using a spatial scan test for events, was 10.4 (p value <0.01) within the power plant area when compared with the outside area. In addition, there was an inverse association of the distance to the power plant (coefficient = −0.01 per km) with asthma visits when multivariable models were used. No asthma clusters were identified around the petrochemical industrial area.

CONCLUSION: Our analyses revealed that there was a cluster of ED visits for asthma among children who lived near the coal-fired power plant just outside Edmonton.

Key words

Air pollution asthma disease cluster industry Canada 

Résumé

OBJECTIF: Il est reconnu que les enfants sont plus sensibles aux effets de la pollution de l’air que les adultes en bonne santé, mais les études canadiennes sur les enfants portant sur les émissions industrielles sont relativement rares. Nous avons mené une étude spatiale transversale pour explorer les associations entre les visites aux services d’urgence (SU) dues à l’asthme chez les enfants et le fait de résider à proximité des deux sources industrielles de pollution de l’air (la centrale thermique au charbon et l’industrie pétrochimique) à Edmonton, au Canada.

MÉTHODE: À l’aide des données administratives sur les soins de santé de l’Alberta de 2004 à 2010, nous avons procédé à l’analyse spatiale de données chiffrées sur les grappes de cas de maladies autour de ces deux sources industrielles. La distance entre le lieu de résidence des enfants et ces sources industrielles a été déterminée à l’aide du code postal de six caractères obtenu lors des visites des enfants aux SU. Les grappes de cas ont été déterminées à l’échelle des aires de diffusion du Recensement. Une régression spatiale multivariée binomiale négative a permis d’estimer les risques de grappes par rapport à la distance des sources industrielles.

RÉSULTATS: Le risque relatif de visites aux SU dues à l’asthme, calculé à l’aide d’une analyse spatiale des événements, était de 10,4 (valeur p <0,01) dans les environs de la centrale comparativement à la zone extérieure. Il y avait en outre une association inverse entre la distance de la centrale (coefficient = −0,01 par km) et les visites dues à l’asthme lorsque nous avons utilisé des modèles multivariés. Aucune grappe de cas d’asthme n’a été repérée dans la zone de l’industrie pétrochimique.

CONCLUSION: Nos analyses ont révélé la présence d’une grappe de visites aux SU dues à l’asthme chez les enfants vivant près de la centrale thermique au charbon située juste en dehors d’Edmonton.

Mots clés

pollution de l’air asthme grappe de cas de maladie industrie Canada 

References

  1. 1.
    Brunekreef B, Holgate ST. Air pollution and health. Lancet 2002; 360(9341):1233–42. PMID: 12401268. doi: 10.1016/S0140-6736(02)11274-8.CrossRefGoogle Scholar
  2. 2.
    International Agency for Research on Cancer. Outdoor Air Pollution a Leading Environmental Cause of Cancer Deaths. Geneva, 2013.Google Scholar
  3. 3.
    Stieb D, Liu L. Air quality impacts on health. In: Taylor E, McMillan A (Eds.), Air Quality Management. Dordrecht, the Netherlands: Springer, 2014; 141–166.CrossRefGoogle Scholar
  4. 4.
    Gilliland FD, McConnell R, Peters J, Gong H Jr. A theoretical basis for investigating ambient air pollution and children’s respiratory health. Environ Health Perspect 1999;107(Suppl 3):403–7. PMID: 10346989. doi: 10.1289/ehp. 99107s3403.CrossRefGoogle Scholar
  5. 5.
    Schwartz J. Air pollution and children’s health. Pediatrics 2004;113 (4 Suppl):1037–43. PMID: 15060197.Google Scholar
  6. 6.
    Rodriguez-Villamizar L, Magico A, Osornio-Vargas A, Rowe BH. The effects of outdoor air pollution on the respiratory health of Canadian children: A systematic review of epidemiological studies. Can Respir J 2015;22(5): 282–92. PMID: 25961280. doi: 10.1155/2015/263427.CrossRefGoogle Scholar
  7. 7.
    Smargiassi A, Kosatsky T, Hicks J, Plante C, Armstrong B, Villeneuve PJ, et al. Risk of asthmatic episodes in children exposed to sulfur dioxide stack emissions from a refinery point source in Montreal, Canada. Environ Health Perspect 2009;117(4):653–59. PMID: 19440507. doi: 10.1289/ehp.0800010.CrossRefGoogle Scholar
  8. 8.
    Brand A, McLean KE, Henderson SB, Fournier M, Liu L, Kosatsky T, et al. Respiratory hospital admissions in young children living near metal smelters, pulp mills and oil refineries in two Canadian provinces. Environ Int 2016; 94:24–32. PMID: 27203781. doi: 10.1016/j.envint.2016.05.002.CrossRefGoogle Scholar
  9. 9.
    Lewin A, Buteau S, Brand A, Kosatsky T, Smargiassi A. Short-term risk of hospitalization for asthma or bronchiolitis in children living near analuminum smelter. J Expo Sci Environ Epidemiol 2013;23(5):474–80. PMID: 23695491. doi: 10.1038/jes.2013.27.CrossRefGoogle Scholar
  10. 10.
    Villeneuve PJ, Chen L, Rowe BH, Coates F. Outdoor air pollution and emergency department visits for asthma among children and adults: A case-crossover study in northern Alberta, Canada. Environ Health 2007; 6:40. PMID: 18157917. doi: 10.1186/1476-069X-6-40.CrossRefGoogle Scholar
  11. 11.
    Szyszkowicz M. Ambient air pollution and daily emergency department visits for asthma in Edmonton, Canada. Int J Occup Med Environ Health 2008; 21(1):25–30. PMID: 18468973. doi: 10.2478/v10001-008-0002-3.CrossRefGoogle Scholar
  12. 12.
    Statistics Canada, Government of Canada. Focus on Geography Series, 2011 Census. Ottawa, ON: Statistics Canada, 2012. Catalogue no. 98-310-XWE 2011004.Google Scholar
  13. 13.
    Griffiths M, Dyer S. Upgrader Alley. Oil Sands Fever Strikes Edmonton. Edmonton, AB: The PEMBINA Institute, 2008; 58 p.Google Scholar
  14. 14.
    The Pembina Foundation, The Asthma Society of Canada, The Canadian Association of Physicians for the Environment, The Lung Association, Alberta & Northwest Territories and The Pembina Institute. A Costly Diagnosis: Subsidizing Coal Power With Alhertan’s Health. Edmonton, AB, 2013.Google Scholar
  15. 15.
    Stieb DM, Beveridge RC, Rowe BH, Walter SD, Judek S. Assessing diagnostic classification in an emergency department: Implications for daily time series studies of air pollution. Am J Epidemiol 1998;148(7):666–67. PMID: 9778173. doi: 10.1093/aje/148.7.666.CrossRefGoogle Scholar
  16. 16.
    University of Toronto. Canadian Census Analyser 2015. Toronto, ON: University of Toronto, 2015. Available at: http://dc.chass.utoronto.ca.login.ezproxy.library.ualberta.ca/census/ (Accessed November 14, 2015).Google Scholar
  17. 17.
    Chan E, Serrano J, Chen L, Stieb DM, Jerrett M, Osornio-Vargas A. Development of a Canadian socioeconomic status index for the study of health outcomes related to environmental pollution. BMC Public Health 2015; 15:714. PMID: 26215141. doi: 10.1186/sl2889-015-1992-y.CrossRefGoogle Scholar
  18. 18.
    Statistics Canada, Government of Canada. Postal Code Conversion File (PCCF). Toronto, ON: Statistics Canada, 2013.Google Scholar
  19. 19.
    Lawson A, Biggeri A, Bohning D, Lesaffre E, Viel J-F, Bertollini R. Disease Mapping and Risk Assessment for Public Health. Chichester, UK: John Wiley & Sons, 1999; 482 p.Google Scholar
  20. 20.
    Carriere KC, Roos LL. Comparing standardized rates of events. Am J Epidemiol 1994;140(5):472–82. PMID: 8067339. doi: 10.1093/oxfordjournals.aje. all7269.CrossRefGoogle Scholar
  21. 21.
    Rosychuk RJ. Identifying geographic areas with high disease rates: When do confidence intervals for rates and a disease cluster detection method agree? Int J Health Geogr 2006;5:46. PMID: 17049097. doi: 10.1186/1476-072X-5-46.CrossRefGoogle Scholar
  22. 22.
    Kulldorff M, Nagarwalla N. Spatial disease clusters: Detection and inference. Stat Med 1995;14:799–810. PMID: 7644860. doi: 10.1002/sim.4780140809.CrossRefGoogle Scholar
  23. 23.
    Stone RA. Investigations of excess environmental risks around putative sources: Statistical problems and a proposed test. Stat Med 1988;7(6):649–60. PMID: 3406597. doi: 10.1002/sim.4780070604.CrossRefGoogle Scholar
  24. 24.
    Lawson A. On the analysis of mortality events associated with a prespecified fixed point. J R Stat Soc Ser A Stat Soc 1993;156(3):363–77. PMID: 12159125. doi: 10.2307/2983063.CrossRefGoogle Scholar
  25. 25.
    Chang H-M, Rosychuk RJ. A spatial scan statistic for compound Poisson data, using the negative binomial distribution and accounting for population stratification. Stat Sin 2015;25:313–27. doi: 10.5705/ss.2013.215w.Google Scholar
  26. 26.
    Lawson A. The Statistical Analysis of Point Events Associated With a Fixed Point. St Andrews, UK: University of St Andrews, 1991.Google Scholar
  27. 27.
    Hystad P, Setton E, Cervantes A, Poplawski K, Deschenes S, Brauer M, et al. Creating national air pollution models for population exposure assessment in Canada. Environ Health Perspect 2011;119(8):1123–29. PMID: 21454147. doi: 10.1289/ehp.l002976.CrossRefGoogle Scholar
  28. 28.
    Wabamum and Area Community Exposure and Health Effects Assessment Program (WACEHEAP). Wabamum and Area Community Exposure and Health Effects Assessment Program (WACEHEAP). Summary Report 2006. Edmonton, AB: WACEHEAP, 2006.Google Scholar
  29. 29.
    Canadian Medical Association. No Breathing Room: National Illness Costs of Air Pollution - Technical Report. Ottawa, ON: Canadian Medical Association, 2008.Google Scholar
  30. 30.
    Torabi M, Rosychuk RJ. An examination of five spatial disease clustering methodologies for the identification of childhood cancer clusters in Alberta, Canada. Spat Spatiotemporal Epidemiol 2011;2(4):321–30. PMID: 22748230. doi: 10.1016/j.sste.2011.10.003.CrossRefGoogle Scholar

Copyright information

© The Canadian Public Health Association 2017

Authors and Affiliations

  • Laura A. Rodriguez-Villamizar
    • 1
    • 2
    Email author
  • Rhonda J. Rosychuk
    • 3
  • Alvaro Osornio-Vargas
    • 3
  • Paul J. Villeneuve
    • 4
  • Brian H. Rowe
    • 5
  1. 1.School of Public HealthUniversity of AlbertaEdmontonCanada
  2. 2.Department of Public HealthUniversidad Industrial de SantanderBucaramanga, SantanderColombia
  3. 3.Department of PediatricsUniversity of AlbertaEdmontonCanada
  4. 4.Department of Health SciencesCarleton UniversityOttawaCanada
  5. 5.Canadian Institutes of Health Research and the Department of Emergency MedicineUniversity of AlbertaEdmontonCanada

Personalised recommendations