Advertisement

Canadian Journal of Public Health

, Volume 108, Issue 5–6, pp e530–e538 | Cite as

Validating an administrative data-based case definition for identifying children and youth with autism spectrum disorder for surveillance purposes

  • Helen Coo
  • Hélène Ouellette-KuntzEmail author
  • Marni Brownell
  • Shahin Shooshtari
  • Ana Hanlon-Dearman
Quantitative Research
  • 3 Downloads

Abstract

OBJECTIVES: To evaluate the sensitivity and positive predictive value (PPV) of administrative health and education data for identifying cases of autism spectrum disorder (ASD) in Manitoba, and to recommend a surveillance case definition.

METHODS: Four service providers abstracted information on children who had been clinically diagnosed with ASD (“sensitivity cohort”). That information was linked to Manitoba’s administrative health and education data and records were extracted into the study dataset. Records were also included for children who had an administrative diagnosis of ASD but who were not part of the sensitivity cohort. Study packages were mailed to the parents of the latter group in order to verify their diagnostic status. The sensitivity and PPV of various case definitions were calculated.

RESULTS: Among the 1728 service provider-reported cases, 1532 had an administrative diagnosis of ASD. A total of 2414 children had an administrative diagnosis, of whom 882 were not part of the sensitivity cohort. The response to the mail-out was very poor (<3%). Accordingly, we calculated minimum PPVs. Our recommended surveillance case definitions are ≥1 physician claim (ICD-9-CM 299) or ≥1 “ASD” special education record (2–5 years of age), and ≥2 physician claims or ≥1 “ASD” special education record (6–14 years of age). The sensitivity ranged from 80% (95% CI: 77–83) to 88% (95% CI: 83–91) and the minimum PPV from 70% (95% CI: 67–73) to 78% (95% CI: 75–81) for these definitions.

CONCLUSION: This work advances the goal of establishing a cost-effective national surveillance system for ASD.

Key words

Autism spectrum disorder surveillance administrative data validation studies Manitoba Manitoba Centre for Health Policy 

Résumé

OBJECTIFS: Évaluer la sensibilité et la valeur prédictive positive (VPP) des données administratives dans le domaine de la santé et de l’éducation pour déceler les cas de troubles du spectre autistique (TSA) au Manitoba et recommander une définition de cas sous surveillance.

MÉTHODE: Quatre dispensateurs de services ont résumé les renseignements d’enfants ayant reçu un diagnostic clinique de TSA («cohorte de sensibilité»). Ces renseignements ont été maillés avec les données administratives du Manitoba dans le domaine de la santé et de l’éducation, et les dossiers ont été extraits vers le jeu de données de l’étude. Ont aussi été inclus les dossiers des enfants ayant un diagnostic administratif de TSA, mais ne faisant pas partie de la cohorte de sensibilité. La trousse de l’information de l’étude a été envoyée par la poste aux parents de ce dernier groupe pour confirmer le diagnostic des enfants. La sensibilité et la VPP de diverses définitions de cas ont été calculées.

RÉSULTATS: Sur les 1 728 cas déclarés par les dispensateurs de services, 1 532 avaient un diagnostic administratif de TSA. Au total, 2 414 enfants avaient un diagnostic administratif, dont 882 ne faisant pas partie de la cohorte de sensibilité. La réponse à l’envoi postal a été nettement insuffisante (<3 %). Par conséquent, nous avons calculé des VPP minimales. Nos définitions de cas sous surveillance recommandées sont ≥1 demande(s) de paiement de médecin(s) (CIM-9-MC 299) ou ≥1 dossier(s) d’éducation spécialisée «TSA» (2–5 ans), et ≥2 demandes de paiement de médecins ou ≥1 dossier(s) d’éducation spécialisée «TSA» (6–14 ans). La sensibilité variait de 80 % (IC de 95 %: 77–83) à 88 % (IC de 95 %: 83–91 ) et la VPP minimale de 70 % (IC de 95 %: 67–73) à 78 % (IC de 95 %: 75–81) pour ces définitions.

CONCLUSION: Ce travail nous rapproche de l’objectif d’établir un système de surveillance national économiquement efficace pour les TSA.

Mots clés

trouble du spectre autistique surveillance données administratives études de validation Manitoba Centre d’élaboration et d’évaluation de la politique des soins de santé du Manitoba 

References

  1. 1.
    Government of Canada. Surveillance of Autism Spectrum Disorder (ASD). Ottawa, ON: Government of Canada, 2016. Available at: http://healthycanadians.gc.ca/diseases-conditions-maladies-affections/disease-maladie/autism-autisme/surveillance-eng.php?id=surveillance (Accessed June 21, 2016).Google Scholar
  2. 2.
    Dodds L, Spencer A, Shea S, Fell D, Armson BA, Allen AC, et al. Validity of autism diagnoses using administrative health data. Chronic Dis Can 2009; 29:102–7. PMID: 19527568.PubMedPubMedCentralGoogle Scholar
  3. 3.
    Manitoba Centre for Health Policy. Population Health Research Data Repository Data List. Winnipeg, MB: Manitoba Centre for Health Policy, n.d. Available at: http://umanitoba.ca/faculties/health_sciences/medicine/units/community_health_sciences/departmental_units/mchp/resources/repository/datalist.html (Accessed June 21, 2016).
  4. 4.
    Roos LL, Brownell M, Lix L, Roos NP, Walld R, MacWilliam L. From health research to social research: Privacy, methods, approaches. Soc Sci Med 2008; 66:117–29. PMID: 17919795. doi: 10.1016/j.socscimed.2007.08.017.CrossRefGoogle Scholar
  5. 5.
    Manitoba Centre for Health Policy. Concept: Intellectual Disability (Mental Retardation)/Developmental Disability. Winnipeg, MB: Manitoba Centre for Health Policy, 2015. Available at: http://mchp-appserv.cpe.umanitoba.ca/viewConcept.php?conceptID=1365 (Accessed June 30, 2016).Google Scholar
  6. 6.
    Burke JP, Jain A, Yang W, Kelly JP, Kaiser M, Becker L, et al. Does a claims diagnosis of autism mean a true case? Autism 2014;18:321–30. PMID: 23739541. doi: 10.1177/1362361312467709.CrossRefGoogle Scholar
  7. 7.
    Lix LM, Walker R, Quan H, Nesdole R, Yang J, Chen G, et al. Features of physician services databases in Canada. Chronic Dis Inj Can 2012;32:186–93. PMID: 23046800.PubMedGoogle Scholar
  8. 8.
    Polyak A, Kubina RM, Girirajan S. Comorbidity of intellectual disability confounds ascertainment of autism: Implications for genetic diagnosis. Am J Med Genet B Neuropsychiatr Genet 2015;168:600–8. PMID: 26198689. doi: 10. 1002/ajmg.b.32338.CrossRefGoogle Scholar
  9. 9.
    Ouellette-Kuntz HM, Coo H, Lam M, Yu CT, Breitenbach MM, Hennessey PE, et al. Age at diagnosis of autism spectrum disorders in four regions of Canada. Can J Public Health 2009;100:268–73. PMID: 19722339.PubMedGoogle Scholar
  10. 10.
    Lix L, Yogendran M, Mann J. Defining and Validating Chronic Diseases: An Administrative Data Approach. An Update with ICD-10-CA. Winnipeg, MB: Manitoba Centre for Health Policy, 2008.Google Scholar
  11. 11.
    Fombonne E. Epidemiology of pervasive developmental disorders. Pediatr Res 2009;65:591–98. PMID: 19218885. doi: 10.1203/PDR.0b013e31819e7203.CrossRefGoogle Scholar
  12. 12.
    Nattinger AB, Laud PW, Bajorunaite R, Sparapani RA, Freeman JL. An algorithm for the use of Medicare claims data to identify women with incident breast cancer. Health Serv Res 2003;39:1733–49. PMID: 15533184. doi: 10.1111/j.1475-6773.2004.00315.X.CrossRefGoogle Scholar

Copyright information

© The Canadian Public Health Association 2017

Authors and Affiliations

  • Helen Coo
    • 1
  • Hélène Ouellette-Kuntz
    • 2
    Email author
  • Marni Brownell
    • 3
  • Shahin Shooshtari
    • 4
  • Ana Hanlon-Dearman
    • 5
  1. 1.Department of Public Health SciencesQueen’s UniversityKingstonCanada
  2. 2.Department of Public Health SciencesQueen’s University and OngwanadaKingstonCanada
  3. 3.Department of Community Health SciencesUniversity of Manitoba and Manitoba Centre for Health PolicyWinnipegCanada
  4. 4.Department of Community Health SciencesUniversity of Manitoba and St.Amant Research CenterWinnipegCanada
  5. 5.Department of Pediatrics and Child HealthUniversity of ManitobaWinnipegCanada

Personalised recommendations