Advertisement

Canadian Journal of Public Health

, Volume 108, Issue 2, pp e162–e168 | Cite as

Region-level obesity projections and an examination of its correlates in Quebec

  • Deepa JahagirdarEmail author
  • Ernest Lo
Quantitative Research
  • 1 Downloads

Abstract

OBJECTIVES: Regional public health policy-makers frequently adopt obesity programs and objectives that have been established at global, provincial/state or national levels. However, the presence of substantial inter-regional disparities could render this practice inefficient. Studies that collectively assess obesity prevalence, temporal trends and their heterogeneity at the region level are rare, though they could be used to support better regional surveillance and planning. To address this gap, our study projected obesity prevalence time series to 2023 for 16 health regions in Quebec. We also compared the extent to which yearly rates of increase (or slope) versus cross-sectional prevalence drove regional heterogeneity and correlated with obesity-related socio-demographic and behavioural characteristics.

METHODS: Projections were done using weighted compositional regression to fit and extrapolate obesity prevalence time series (1987–2012). Heterogeneity in obesity prevalence as a function of time and obesity slope were characterized using standard deviation. The correlation of region-level obesity prevalence and slope with 14 area-level obesity-related characteristics was assessed.

RESULTS: Obesity prevalence is projected to increase in all regions. Region-level heterogeneity in prevalence in 2012 (σ = 2.2%) is projected to increase to (σ = 3.1%) by 2023. The increase in prevalence heterogeneity appeared to be driven by region-level heterogeneity in slope (β = 0.22%–0.51%/year). Obesity-related characteristics were found to be more strongly correlated with slope than with prevalence.

CONCLUSION: Large area obesity trends mask substantial and increasing region-level disparities. Obesity slope appears to drive region-level heterogeneity and correlate strongly with explanatory factors, and may represent a pertinent metric for public health monitoring.

Key Words

Obesity epidemiology public health 

Résumé

OBJECTIFS: Les décideurs de politiques de santé publique régionaux appliquent souvent des programmes et objectifs relatifs à l’obésité établis à l’échelle provinciale ou nationale. Cependant, d’importantes disparités régionales suggèrent que cette pratique serait inefficace. Les études évaluant collectivement la prévalence, les tendances temporelles et leur hétérogénéité à l’échelle régionale pourraient soutenir les décideurs, mais elles sont peu nombreuses. Afin de répondre à cette lacune, nous avons effectué des projections jusqu’à 2023 sur des séries temporelles de la prévalence de l’obésité pour 16 régions sociosanitaires du Québec. Nous avons aussi comparé l’hétérogénéité régionale pour la pente reliant les prévalences annuelles à celle pour la prévalence annuelle considérée transversalement, ainsi que la corrélation entre chacune de ces mesures et les caractéristiques sociodémographiques et comportementales associées à l’obésité.

MÉTHODES: Les projections ont été faites grâce à la régression compositionnelle pondérée pour ajuster et extrapoler les séries temporelles de la prévalence de 1987–2012. L’ampleur de l’hétérogénéité régionale dans la pente des prévalences annuelles et dans la prévalence annuelle transversale est estimée par l’écart-type. La corrélation entre chacune des mesures de prévalence à l’échelle régionale avec 14 caractéristiques liées avec l’obésité ont été estimées par la méthode de Spearman.

RÉSULTATS: Les analyses de projections suggèrent une augmentation de la prévalence de l’obésité dans toutes les régions étudiées. On projette que l’hétérogénéité régionale de la prévalence augmentera entre 2012 (σ = 2,2 %) et 2023 (σ = 3,1 %). Cette augmentation dans l’hétérogénéité de la prévalence provient de l’hétérogénéité régionale observée avec la pente (β = 0,22 %–0,51 %/année). La corrélation entre les caractéristiques associées à l’obésité était également plus importante avec la pente.

CONCLUSION: Les tendances de l’obésité à grande échelle masquent des disparités importantes et grandissantes à l’échelle régionale. La pente des prévalences annuelles semble révéler le mieux l’hétérogénéité régionale et est fortement corrélée aux caractéristiques associées à l’obésité. Cette mesure pourrait être un indicateur pertinent pour la surveillance et la planification sociosanitaire.

Mots Clés

obésité épidémiologie santé publique 

References

  1. 1.
    Kelly T, Yang W, Chen C, Reynolds K, He J. Global burden of obesity in 2005 and projections to 2030. Int J Obesity 2008;32(9):1431–37. doi: 10.1038/ijo. 2008.102.CrossRefGoogle Scholar
  2. 2.
    Finkelstein EA, Khavjou OA, Thompson H, Trogdon JG, Pan L, Sherry B, et al. Obesity and severe obesity forecasts through 2030. Am J Prev Med 2012; 42(6):563–70. PMID: 22608371. doi: 10.1016/j.amepre.2011.10.026.CrossRefGoogle Scholar
  3. 3.
    Lo E, Hamel D, Jen Y, Lamontagne P, Martel S, Steensma C, et al. Projection scenarios of body mass index (2013–2030) for Public Health Planning in Quebec. BMC Public Health 2014;14(1):996. PMID: 25253196. doi: 10.1186/ 1471-2458-14-996.CrossRefGoogle Scholar
  4. 4.
    D’Agostino-McGowan L, Gennarelli RL, Lyons SA, Goodman MS. Using small-area analysis to estimate county-level racial disparities in obesity demonstrating the necessity of targeted interventions. Int J Environ Res Public Health 2014;11(1):418–28. doi: 10.3390/ijerph110100418.CrossRefGoogle Scholar
  5. 5.
    Kim I, Keppel KG. Priority data needs: Sources of national, state, and local-level data and data collection systems. Healthy People 2000 Stat Notes 1997;15:1–11.Google Scholar
  6. 6.
    World Health Organization. Global Status Report on Noncommunicable Diseases. Geneva, Switzerland, 2014.Google Scholar
  7. 7.
    Wang YC, Colditz GA, Kuntz KM. Forecasting the obesity epidemic in the aging U.S. population. Obesity 2007;15(11):2855–65. PMID: 18070778. doi: 10.1038/oby.2007.339.CrossRefGoogle Scholar
  8. 8.
    Séguin L, Nikiema B, Gauvin L, Lambert M, Thanh Tu M, Kakinami L, et al. Tracking exposure to child poverty during the first 10 years of life in a Quebec birth cohort. Can J Public Health 2012;103(4):e270–76. PMID: 23618640.PubMedGoogle Scholar
  9. 9.
    Conrad D, Capewell S. Associations between deprivation and rates of childhood overweight and obesity in England, 2007–2010: An ecological study. BMJ Open 2012;2(2):e000463. PMID: 22505306. doi: 10.1136/ bmjopen-2011-000463.CrossRefGoogle Scholar
  10. 10.
    Fildes A, Charlton J, Rudisill C, Littlejohns P, Prevost AT, Gulliford MC. Probability of an obese person attaining normal body weight: Cohort study using electronic health records. Am J Public Health 2015;105(9):e54–59. doi: 10.2105/AJPH.2015.302773.CrossRefGoogle Scholar
  11. 11.
    Ljungvall Å, Gerdtham U-G. More equal but heavier: A longitudinal analysis of income-related obesity inequalities in an adult Swedish cohort. Soc Sci Med 2010;70(2):221–31. doi: 10.1016/j.socscimed.2009.10.014.CrossRefGoogle Scholar
  12. 12.
    Boing AF, Subramanian SV. The influence of area-level education on body mass index, waist circumference and obesity according to gender. Int J Public Health 2015;60(6):727–36. doi: 10.1007/s00038-015-0721-8.CrossRefGoogle Scholar
  13. 13.
    Chiolero A, Faeh D, Paccaud F, Cornuz J. Consequences of smoking for body weight, body fat distribution, and insulin resistance. Am J Clin Nutr 2008; 87(4):801–9. PMID: 18400700.CrossRefGoogle Scholar
  14. 14.
    McDonald JT, Kennedy S. Is migration to Canada associated with unhealthy weight gain? Overweight and obesity among Canada’s immigrants. Soc Sci Med 2005;61(12):2469–81. doi: 10.1016/j.socscimed.2005.05.004.CrossRefGoogle Scholar
  15. 15.
    Antecol H, Bedard K. Unhealthy assimilation: Why do immigrants converge to American health status levels? Demography 2006;43(2):337–60. PMID: 16889132. doi: 10.1353/dem.2006.0011.CrossRefGoogle Scholar
  16. 16.
    Dallman MF, Pecoraro N, Akana SF, La Fleur SE, Gomez F, Houshyar H, et al. Chronic stress and obesity: A new view of “comfort food”. Proc Natl Acad Sci USA 2003;100(20):11696–701. PMID: 12975524. doi: 10.1073/pnas.1934666100.CrossRefGoogle Scholar
  17. 17.
    Dallman MF. Stress-induced obesity and the emotional nervous system. Trends Endocrinol Metab 2010;21(3):159–65. doi: 10.1016/j.tem.2009.10.004.CrossRefGoogle Scholar
  18. 18.
    Kuo LE, Kitlinska JB, Tilan JU, Li L, Baker SB, Johnson MD, et al. Neuropeptide Y acts directly in the periphery on fat tissue and mediates stress-induced obesity and metabolic syndrome. Nat Med 2007;13(7):803–11. PMID: 17603492. doi: 10.1038/nm1611.CrossRefGoogle Scholar
  19. 19.
    Kyrou I, Chrousos GP, Tsigos C. Stress, visceral obesity, and metabolic complications. Ann N Y Acad Sci 2006;1083(1):77–110. doi: 10.1196/annals. 1367.008.CrossRefGoogle Scholar
  20. 20.
    Cohen-Cole E, Fletcher JM. Is obesity contagious? Social networks vs. environmental factors in the obesity epidemic. J Health Econ 2008; 27(5):1382–87. doi: 10.1016/j.jhealeco.2008.04.005.CrossRefGoogle Scholar
  21. 21.
    Christakis NA, Fowler JH. The spread of obesity in a large social network over 32 years. N Engl J Med 2007;357(4):370–79. doi: 10.1056/NEJMsa066082.CrossRefGoogle Scholar
  22. 22.
    Bruner MW, Lawson J, Pickett W, Boyce W, Janssen I. Rural Canadian adolescents are more likely to be obese compared with urban adolescents. Int J Pediatr Obes 2008;3(4):205–11. doi: 10.1080/17477160802158477.CrossRefGoogle Scholar
  23. 23.
    Lutfiyya MN, Lipsky MS, Wisdom-Behounek J, Inpanbutr-Martinkus M. Is rural residency a risk factor for overweight and obesity for U.S. children? Obesity 2007;15(9):2348–56. PMID: 17890504. doi: 10.1038/oby.2007.278.CrossRefGoogle Scholar
  24. 24.
    Shields M, Tjepkema M. Regional differences in obesity. Health Rep 2006; 17(3):61–67. PMID: 16981487.PubMedGoogle Scholar
  25. 25.
    Courtemanche R, Tarte F. Plan de sondage de l’enquête Santé Québec. Cahier technique 87-02. Québec, QC: Ministère de la Santé et des Services sociaux, Gouvernement du Québec, 1987.Google Scholar
  26. 26.
    Daveluy C, Pica L, Audet N, Courtemanche R, Lapointe F, Côté L, Baulne J. Enquête sociale et de santé 1998. Cahier technique et méthodologique: documentation générale. Québec, QC, 2014.Google Scholar
  27. 27.
    Beland Y. Canadian Community Health Survey–Methodological overview. Health Rep 2002;13:9–14. PMID: 12743956.PubMedGoogle Scholar
  28. 28.
    Statistics Canada. Canadian Community Health Survey–Annual Component (CCHS). Ottawa, ON: Statistics Canada, 2013.Google Scholar
  29. 29.
    Efron B, Morris CN. Stein’s paradox in statistics. Sci Am 1977;236:119–27.CrossRefGoogle Scholar
  30. 30.
    Frohlich KL, Potvin L. Transcending the known in public health practice. Am J Public Health 2008;98(2):216–21. doi: 10.2105/AJPH.2007.114777.CrossRefGoogle Scholar
  31. 31.
    Cunningham SA, Kramer MR, Narayan KV. Incidence of childhood obesity in the United States. N Engl J Med 2014;370(5):403–11. doi: 10.1056/ NEJMoa1309753.CrossRefGoogle Scholar
  32. 32.
    Parikh NI, Pencina MJ, Wang TJ, Lanier KJ, Fox CS, D’Agostino RB, et al. Increasing trends in incidence of overweight and obesity over 5 decades. Am J Med 2007;120(3):242–50. PMID: 17349447. doi: 10.1016/j.amjmed. 2006.06.004.CrossRefGoogle Scholar
  33. 33.
    Pan L, Freedman DS, Gillespie C, Park S, Sherry B. Incidences of obesity and extreme obesity among US adults: Findings from the 2009 Behavioral Risk Factor Surveillance System. Popul Health Metr 2011;9(1):56. doi: 10.1186/ 1478-7954-9-56.CrossRefGoogle Scholar
  34. 34.
    Gouvernement du Québec. Investir pour l’avenir: Plan d’action gouvernemental de promotion de saines habitudes de vie et de prévention des problèmes reliés au poids 2006–2012, 2015. Available at: http://publications.msss.gouv.qc.ca/acrobat/f/documentation/2012/12-289-08W.pdf (Accessed February 6, 2015).Google Scholar
  35. 35.
    Reversing the Epidemic: The New York City Obesity Task Force Plan to Prevent and Control Obesity. New York, NY, 2012. Available at: http://www.nyc.gov/html/om/pdf/2012/otf_report.pdf (Accessed February 6, 2015).
  36. 36.
    Council of Australian Governments. National Healthcare Agreement, 2012. Available at: http://www.federalfinancialrelations.gov.au/content/ npa/healthcare/national-agreement.pdf (Accessed February 6, 2015).Google Scholar
  37. 37.
    Department of Health. Healthy Lives, Healthy People: A Call to Action on Obesity in England, 2011. Available at: https://www.gov.uk/government/uploads/system/uploads/attachment_data/file/213720/dh_130487.pdf (Accessed: February 6, 2015).Google Scholar
  38. 38.
    Enquête de santé du Saguenay-Lac-Saint-Jean 2012. Agence de la santé et des services sociaux du Saguenay-Lac-Saint-Jean, 2013.Google Scholar
  39. 39.
    Enquête Santé Côte-Nord 2010. Centre intégré de santé et de services sociaux de la Côte-Nord, 2012.Google Scholar
  40. 40.
    Feng J, Glass TA, Curriero FC, Stewart WF, Schwartz BS. The built environment and obesity: A systematic review of the epidemiologic evidence. Health Place 2010;16(2):175–90. doi: 10.1016/j.healthplace.2009.09.008.CrossRefGoogle Scholar
  41. 41.
    Gorber SC, Tremblay M, Moher D, Gorber B. A comparison of direct vs. self-report measures for assessing height, weight and body mass index: A systematic review. Obes Rev 2007;8(4):307–26. doi: 10.1111/j.1467-789X. 2007.00347.x.CrossRefGoogle Scholar

Copyright information

© The Canadian Public Health Association 2017

Authors and Affiliations

  1. 1.Department of Epidemiology, Biostatistics and Occupational HealthMcGill UniversityMontrealCanada
  2. 2.Bureau d’information et d’études en santé des populationsInstitut national de santé publique du Québec (INSPQ)MontrealCanada

Personalised recommendations