Advertisement

Canadian Journal of Public Health

, Volume 107, Supplement 1, pp eS14–eS20 | Cite as

Using GPS and activity tracking to reveal the influence of adolescents’ food environment exposure on junk food purchasing

  • Richard C. Sadler
  • Andrew F. Clark
  • Piotr Wilk
  • Colleen O’Connor
  • Jason A. GillilandEmail author
Quantitative Research

Abstract

OBJECTIVES: This study examines the influence of adolescents’ exposure to unhealthy food outlets on junk food purchasing during trips between home and school, with particular attention to how exposure and purchasing differ according to child’s biological sex, mode of transportation, and direction to or from school.

METHODS: Between 2010 and 2013, students (n = 654) aged 9-13 years from 25 schools in London and Middlesex County, ON, completed a socio-demographic survey and an activity diary (to identify food purchases), and were observed via a global positioning system for 2 weeks (to track routes for trips to/from school). Spatial data on routes and purchase data were integrated with a validated food outlet database in a geographic information system, and exposure was measured as the minutes a child spent within 50 m of an unhealthy food outlet (i.e., fast food restaurants, variety stores). For trips involving junk food exposure (n = 4588), multilevel logistic regression was used to assess the relationship between exposure and purchasing.

RESULTS: Multilevel analyses indicated that adolescents’ duration of exposure to unhealthy food outlets between home and school had a significant effect on the likelihood of junk food purchasing. This relationship remained significant when the data were stratified by sex (female/male), trip direction (to/from school) and travel mode (active/car), with the exception of adolescents who travelled by bus.

CONCLUSION: Policies and programs that mitigate the concentration of unhealthy food outlets close to schools are critical for encouraging healthy eating behaviours among children and reducing diet-related health issues such as obesity.

KEY WORDS

Built environment food environment GPS food purchase diet child adolescent 

Résumé

OBJECTIFS : Examiner l’influence de l’exposition des adolescents aux points de vente d’aliments malsains sur leurs achats d’aliments vides durant le trajet entre l’école et la maison, et en particulier à la façon dont l’exposition et les achats diffèrent selon le sexe biologique de l’enfant, le moyen de transport et le sens du trajet.

MÉTHODE : Entre 2010 et 2013, des élèves (n= 654) de 9–13 ans fréquentant 25 écoles du comté de London-Middlesex, ON, ont rempli un questionnaire sociodémographique et un journal de leurs activités (pour repérer leurs achats d’aliments), et ont été observés pendant deux semaines par un système mondial de localisation (pour suivre leurs trajets entre l’école et la maison). Les données spatiales sur les itinéraires et les données d’achat ont été intégrées à une base de données validée de points de vente d’aliments dans un système d’information géographique; l’exposition a été mesurée selon le nombre de minutes qu’un enfant passait à moins de 50 m d’un point de vente d’aliments malsains (p. ex., restaurants rapides, magasins à prix uniques). Pour les trajets où les enfants étaient exposés à des aliments vides (n = 4588), nous avons procédé par régression logistique multiniveau pour évaluer la relation entre l’exposition et l’achat.

RÉSULTATS : Les analyses multiniveaux ont montré que la durée d’exposition des adolescents aux points de vente d’aliments malsains sur le chemin de l’école avait un effet significatif sur leur probabilité d’achat d’aliments vides. Cette relation est demeurée significative lorsque les données ont été stratifiées selon le sexe (fille/garçon), le sens du trajet (vers l’école/vers la maison) et le moyen de transport (transport actif/automobile), sauf pour les adolescents se déplaçant en autobus.

CONCLUSION : Les politiques et les programmes qui atténuent la concentration des points de vente d’aliments malsains près des écoles sont essentiels pour encourager les comportements alimentaires sains chez les enfants et pour réduire les problèmes de santé liés à l’alimentation, comme l’obésité.

MOTS CLÉS

milieu bâti environnement alimentaire systèmes d’information géographique achat d’aliments régime alimentaire enfant adolescent 

References

  1. 1.
    Yusuf S, Hawken S, Ounpuu S, et al. Obesity and the risk of myocardial infarction in 27,000 participants from 52 countries: A case-control study. Lancet 2005;366:1640–1649. PMID: 16271645. doi: doi:10.1016/S0140-6736 (05)67663-5.CrossRefGoogle Scholar
  2. 2.
    Statistics Canada. Overweight and obese youth (self-reported), 2014). Statistics Canada Health Fact Sheets, 2015; 82–625, http://www.statcan.gc.ca/pub/82-625-x/2015001/article/14186-eng.htm.Google Scholar
  3. 3.
    He M, Tucker P, Gilliland J, Irwin JD, Larsen K, Hess P. The influence of local food environments on adolescents’ food purchasing behaviors. Int J Environ Res Public Health 2012;9(4): 1458–1471. PMID: 22690205. doi: 10.3390/ijerph9041458.CrossRefGoogle Scholar
  4. 4.
    He M, Tucker P, Irwin JD, Gilliland J, Larsen K, Hess P. Obesogenic neighbourhoods: The impact of neighbourhood restaurants and convenience stores on adolescents’ food consumption behaviours. Public Health Nutr 2012; 15(12): 2331–2339. PMID: 22390896. doi: 10.1017/S1368980012000584.CrossRefGoogle Scholar
  5. 5.
    Gilliland JA, Rangel CY, Healy MA, Tucker P, Loebach JE, Hess PM, et al. Linking childhood obesity to the built environment: A multi-level analysis of home and school neighbourhood factors associated with body mass index. Can J Public Health 2012;103(9): eS15–eS21. PMID: 23618083. doi: 10.17269/cjph.103.3283.PubMedGoogle Scholar
  6. 6.
    Gilliland J. (2010). The built environment and obesity: trimming waistlines through neighborhood design. In: Bunting T, Filion P, Walker R, eds. Canadian Cities in Transition. Oxford, UK: Oxford University Press, pp. 391–410.Google Scholar
  7. 7.
    Bowman SA, Gortmaker SL, Ebbeling CB, Pereira MA, Ludwig DS. Effects of fast-food consumption on energy intake and diet quality among children in a national household survey. Pediatrics 2004;113(1): 112–118. doi: 10.1542/peds.113.1.112.CrossRefGoogle Scholar
  8. 8.
    Loebach J, Gilliland J. Child-led tours to uncover children’s perceptions and use of neighborhood environments. Children Youth Environ 2010;20(1): 52–90. doi: 10.7721/chilyoutenvi.20.1.0052.Google Scholar
  9. 9.
    Sallis JF, Glanz K. The role of built environments in physical activity, eating, and obesity in childhood. Fut Children 2006;16(1): 89–108. doi: 10.1353/foc. 2006.0009.CrossRefGoogle Scholar
  10. 10.
    Sadler RC, Gilliland JA. Comparing children’s GPS tracks with geospatial proxies for exposure to junk food. Spatial Spatio-Temp Epidemiol 2015;14:55–61.CrossRefGoogle Scholar
  11. 11.
    Shearer C, Rainham D, Blanchard C, Dummer T, Lyons R, Kirk S. Measuring food availability and accessibility among adolescents: Moving beyond the neighbourhood boundary. Social Sci Med 2015;133(May): 322–330. doi: 10. 1016/j.socscimed.2014.11.019.CrossRefGoogle Scholar
  12. 12.
    Chaix B, Meline J, Duncan S, Merrien C, Karusisi N, Perchoux C, et al. GPS tracking in neighborhood and health studies: A step forward for environmental exposure assessment, a step backward for causal inference? Health Place 2013;21: 46–51. PMID: 23425661. doi: 10.1016/j.healthplace. 2013.01.003.CrossRefGoogle Scholar
  13. 13.
    Morland K, Diez-Roux AV, Wing S. Supermarkets, other food stores, and obesity: The Atherosclerosis Risk in Communities Study. Am J Prev Med 2006; 30(4): 333–339. PMID: 16530621. doi: 10.1016/j.amepre.2005.11.003.CrossRefGoogle Scholar
  14. 14.
    Kestens Y, Daniel M. Social inequalities in food exposure around schools in an urban area. Am J Prev Med 2010;39(1): 33–40. PMID: 20537844. doi: 10.1016/j. amepre.2010.03.014.CrossRefGoogle Scholar
  15. 15.
    Lovasi S, Grady S, Rundle A. Steps forward: Review and recommendations for research on walkability, physical activity and cardiovascular health. Public Health Rev 2012;33(2): 484–506. PMID: 25237210.CrossRefGoogle Scholar
  16. 16.
    Williams J, Scarborough P, Matthews A, Cowburn G, Foster C, Roberts N, et al. A systematic review of the influence of the retail food environment around schools on obesity-related outcomes. Obes Rev 2014;15(5): 359–374. PMID: 24417984. doi: 10.1111/obr.12142.CrossRefGoogle Scholar
  17. 17.
    Kestens Y, Lebel A, Chaix B, Clary C, Daniel M, Pampalon R, et al. Association between activity space exposure to food establishments and individual risk of overweight. PloS one 2012;7(8): e414–18. PMID: 22936974. doi: 10.1371/journal.pone.0041418.CrossRefGoogle Scholar
  18. 18.
    Boruff BJ, Nathan A, Nijënstein S. Using GPS technology to (re-examine operational definitions of ‘neighbourhood’ in place-based health research. Int J Health Geogr 2012;11(1): 22. PMID: 22738807. doi: 10.1186/1476-072X-11-22.CrossRefGoogle Scholar
  19. 19.
    Harrison F, Burgoine T, Corder K, van Sluijs EM, Jones A. How well do modelled trips to school record the environments children are exposed to? A cross-sectional comparison of GIS-modelled and GPS-measured trips to school. Int J Health Geogr 2014;13(5). PMID: 24529075. doi: 10.1186/1476-072X-13-5.Google Scholar
  20. 20.
    Engler-Stringer R, Le H, Gerrard A, Muhajarine N. The community and consumer food environment and children’s diet: A systematic review. BMC Public Health 2014;14(1): 522. PMID: 24884443. doi: 10.1186/1471-2458-14-522.CrossRefGoogle Scholar
  21. 21.
    Leal C, Chaix B. The influence of geographic life environments on cardiometabolic risk factors: A systematic review, a methodological assessment and a research agenda. Obes Rev 2011;12(3): 217–230. PMID: 20202135. doi: 10.1111/j.1467-789X.2010.00726.x.CrossRefGoogle Scholar
  22. 22.
    Madsen KA, Cotterman C, Thompson HR, Rissman Y, Rosen NJ, Ritchie LD. Passive commuting and dietary intake in fourth and fifth grade students. Am J Prev Med 2015;48(3): 292–299. PMID: 25547928. doi: 10.1016/j.amepre.2014. 09.033.CrossRefGoogle Scholar
  23. 23.
    Healy MA, Gilliland JA. Quantifying the magnitude of environmental exposure misclassification when using imprecise address proxies in public health research. Spat Spatiotemporal Epidemiol 2012;3(1): 55–67. PMID: 22469491. doi: 10.1016/j.sste.2012.02.006.CrossRefGoogle Scholar
  24. 24.
    Loebach J, Gilliland J. Free range kids? Using GPS-derived activity spaces to examine children’s independent neighborhood activity and mobility. Environ Behav 2014; 1–33. doi: 10.1177/0013916514543177.Google Scholar
  25. 25.
    Larsen K, Merlo J. Appropriate assessment of neighborhood effects on individual health: Integrating random and fixed effects in multilevel logistic regression. Am J Epidemiol 2005;161(1): 81–88. PMID: 15615918. doi: 10.1093/aje/kwi017.CrossRefGoogle Scholar
  26. 26.
    Muthen LK, Muthen BO. Mplus User’s Guide [computer program]. Los Angeles, CA: Muthen and Muthen, 2015.Google Scholar
  27. 27.
    Van Hulst A, Barnett TA, Gauvin L, Daniel M, Kestens Y, Bird M, et al. Associations between children’s diets and features of their residential and school neighbourhood food environments. Can J Public Health 2012;103(9): eS48–eS54. PMID: 23618089.PubMedGoogle Scholar
  28. 28.
    Jabs J, Devine CM. Time scarcity and food choices: An overview. Appetite 2006;47(2): 196–204. PMID: 16698116. doi: 10.1016/j.appet.2006.02.014.CrossRefGoogle Scholar
  29. 29.
    Larsen K, Gilliland J, Hess P. Route based analysis to capture the environmental influences on a child’s mode of travel between home and school. Annals of the Association of American Geographers 2012;102(6): 1348–1365. doi: 10.1080/00045608.2011.627059.CrossRefGoogle Scholar
  30. 30.
    Larsen K, Gilliland J, Hess PM, Tucker P, Irwin J, He M. The influence of the physical environment and sociodemographic characteristics on children’s mode of travel to and from school. Am J Public Health 2009;99(3): 520–526. PMID: 19106422. doi: 10.2105/AJPH.2008.135319.CrossRefGoogle Scholar
  31. 31.
    Breslin FC, Koehoorn M, Cole DC. Employment patterns and work injury experience among Canadian 12 to 14 year olds. Can J Public Health 2008; 201-205. PMID: 18615942. doi: 10.17269/cjph.99.1630.Google Scholar
  32. 32.
    Fraser LK, Edwards KL, Cade J, Clarke GP. The geography of fast food outlets: A review. Int J Environ Res Public Health 2010;7(5): 2290–2308. PMID: 20623025. doi:10.3390/ijerph7052290.CrossRefGoogle Scholar
  33. 33.
    Neumark-Sztainer D, Story M, Perry C, Casey MA. Factors influencing food choices of adolescents: Findings from focus-group discussions with adolescents. J Am Dietetic Assoc 1999;99(8): 929–937. doi: 10.1016/S0002-8223(99)00222-9.CrossRefGoogle Scholar
  34. 34.
    Story M, Neumark-Sztainer D, French S. Individual and environmental influences on adolescent eating behaviors. J Am Dietetic Assoc 2002;102(3): S40–S51. doi: 10.1016/S0002-8223(02)90421-9.CrossRefGoogle Scholar
  35. 35.
    Gilliland J, Sadler R, Clark A, O’Connor C, Milczarek M, Doherty S. Using a smartphone application to promote healthy dietary behaviours and local food consumption. BioMed Res Int, 2015. doi: 10.1155/2015/841368.Google Scholar

Copyright information

© The Canadian Public Health Association 2016

Authors and Affiliations

  • Richard C. Sadler
    • 1
  • Andrew F. Clark
    • 2
  • Piotr Wilk
    • 3
  • Colleen O’Connor
    • 4
  • Jason A. Gilliland
    • 5
    Email author
  1. 1.Department of Family Medicine, Division of Public HealthMichigan State UniversityEast LansingCanada
  2. 2.Department of GeographyUniversity of Western OntarioLondonCanada
  3. 3.Department of Epidemiology & Biostatistics, Department of PaediatricsUniversity of Western OntarioLondonCanada
  4. 4.Division of Food & Nutrition SciencesBrescia University CollegeLondonCanada
  5. 5.Department of Geography, Department of Paediatrics, School of Health StudiesUniversity of Western OntarioLondonCanada

Personalised recommendations