Advertisement

Canadian Journal of Public Health

, Volume 106, Issue 6, pp e362–e368 | Cite as

Estimated public health impacts of changes in concentrations of fine particle air pollution in Canada, 2000 to 2011

  • David M. StiebEmail author
  • Stan Judek
  • Aaron van Donkelaar
  • Randall V. Martin
  • Kevin Brand
  • Hwashin H. Shin
  • Richard T. Burnett
  • Marc H. Smith-Doiron
Quantitative Research

Abstract

OBJECTIVES: To estimate the public health impacts of changes in fine particle air pollution in Canada between 2000 and 2011, employing nationally comprehensive exposure estimates and quantifying the impacts on life expectancy, mortality and morbidity.

METHODS: We employed spatially comprehensive exposure estimates derived from satellite remote sensing to estimate the effects of actual observed changes in concentrations of fine particulate matter (PM), of median aerodynamic diameter <2.5 µm (i.e., PM2.5), from 2000 to 2011. We estimated changes in life expectancy using standard life table methods and changes in frequency of health outcomes as the product of population, baseline rate of the health outcome and the proportional change in health outcome per specified change in PM2.5 concentration.

RESULTS: A population weighted average decrease in PM2.5 of nearly 25% (2.0 µg/m3) was observed between 2000 and 2011. This was estimated to result in a national population weighted average increase in life expectancy of 0.10 years (95% confidence interval 0.03–0.23; up to 0.34 years in specific census divisions) and reductions in the frequency of mortality and morbidity of up to 3.6%. Increases in PM2.5 up to 3.5 µg/m3 were observed in some census divisions, particularly in the prairies.

CONCLUSION: At the national level, changes in PM2.5 concentrations between 2000 and 2011 were associated with an estimated improvement in national population weighted average life expectancy and a net reduction in mortality and morbidity. Areas that failed to improve or that worsened during this period warrant additional scrutiny to identify options for reducing PM2.5 concentrations.

Key Words

Air pollution life expectancy mortality morbidity 

Mots Clés

pollution de l’air espérance de vie mortalité morbidité 

Résumé

OBJECTIFS: Estimer les impacts sur la santé publique des changements dans la pollution de l’air en fines particules au Canada entre 2000 et 2011, en employant des estimations d’exposition complètes à l’échelle nationale et en quantifiant les impacts sur l’espérance de vie, la mortalité et la morbidité.

Méthode: Nous avons employé des estimations d’exposition exhaustives dérivées de la télédétection satellitaire pour estimer les effets des changements réels observés dans les concentrations en fines matières particulaires (MP) de diamètre aérodynamique médian <2.5 µm (MP2.5), entre 2000 et 2011. Nous avons estimé les changements dans l’espérance de vie à l’aide des méthodes standard des tables de survie, et les changements dans la fréquence des résultats sanitaires en fonction de la population, du niveau de référence des résultats sanitaires et du changement proportionnel dans les résultats sanitaires selon le changement spécifié de la concentration en MP2.5.

Résultats: Une diminution moyenne des MP2.5 de près de 25 % (2.0 μg/ m3), pondérée selon la population, a été observée entre 2000 et 2011. On estime que cela a entraîné une hausse moyenne nationale de l’espérance de vie, pondérée selon la population, de 0.10 an (intervalle de confiance de 95 %: 0.03–0.23; jusqu’à 0.34 an dans certains secteurs du recensement) et des baisses de fréquence de la mortalité et de la morbidité jusqu’à 3.6 %. Des augmentations maximales de 3.5 μg/m3 des MP2.5 ont été observées dans certains secteurs du recensement, en particulier dans les Prairies.

Conclusion: À l’échelle nationale, les changements dans les concentrations en MP2.5 survenus entre 2000 et 2011 étaient associés à une amélioration estimative de l’espérance de vie moyenne nationale, pondérée selon la population, et à une baisse nette de la mortalité et de la morbidité. Les régions où la situation ne s’est pas améliorée ou s’est aggravée durant la période à l’étude devraient faire l’objet d’un examen approfondi afin de trouver des options pour réduire les concentrations en MP2.5.

References

  1. 1.
    World Health Organization. Air Quality Guidelines. Global Update 2005. Particulate Matter, Ozone, Nitrogen Dioxide and Sulfur Dioxide. Copenhagen: World Health Organization, 2006.Google Scholar
  2. 2.
    Stieb DM, Liu L. Air quality impacts on health. In: Taylor E, McMillan A (Eds.), Air Quality Management. Dordrecht: Springer, 2014; 141–66.CrossRefGoogle Scholar
  3. 3.
    Canadian Medical Association. No Breathing Room: National Illness Costs of Air Pollution. Ottawa, ON: Canadian Medical Association, 2008.Google Scholar
  4. 4.
    Judek S, Jessiman B, Stieb D, Vet R. Estimated Number of Excess Deaths in Canada Due to Air Pollution. Ottawa: Health Canada, 2004.Google Scholar
  5. 5.
    Lim SS, Vos T, Flaxman AD, Danaei G, Shibuya K, Adair-Rohani H, et al. A comparative risk assessment of burden of disease and injury attributable to 67 risk factors and risk factor clusters in 21 regions, 1990-2010: A systematic analysis for the Global Burden of Disease Study 2010. Lancet 2012;380(9859):2224–60. PMID: 23245609. doi: 10.1016/S0140-6736(12)61766-8.CrossRefGoogle Scholar
  6. 6.
    United States Environmental Protection Agency. Environmental Benefits Mapping and Analysis Program - Community Edition (BenMAP-CE), 2015. Available at: http://www2.epa.gov/benmap (Accessed May 29, 2015).Google Scholar
  7. 7.
    Judek S, Stieb D, Jovic B, Edwards B. The Air Quality Benefits Assessment Tool (AQBAT) User Guide. Ottawa: Health Canada, 2012.Google Scholar
  8. 8.
    Correia AW, Pope CA 3rd, Dockery DW, Wang Y, Ezzati M, Dominici F. Effect of air pollution control on life expectancy in the United States: An analysis of 545 U.S. counties for the period from 2000 to 2007. Epidemiology 2013; 24(1):23–31. PMID: 23211349. doi: 10.1097/EDE.0b013e3182770237.CrossRefGoogle Scholar
  9. 9.
    Coyle D, Stieb D, Burnett RT, DeCivita P, Krewski D, Chen Y, et al. Impact of particulate air pollution on quality-adjusted life expectancy in Canada. J Toxicol Environ Health A 2003;66(16–19):1847–63. PMID: 12959847. doi: 10.1080/15287390306447.CrossRefGoogle Scholar
  10. 10.
    Rabl A. Interpretation of air pollution mortality: Number of deaths or years of life lost. J Air Waste Manag Assoc 2003;53:41–50. PMID: 12568252. doi: 10.1080/10473289.2003.10466118.CrossRefGoogle Scholar
  11. 11.
    Rabl A. Air pollution mortality: Harvesting and loss of life expectancy. J Toxicol Environ Health A 2005;68:1175–80. PMID: 16024496. doi: 10.1080/ 15287390590936049.CrossRefGoogle Scholar
  12. 12.
    Rabl A. Analysis of air pollution mortality in terms of life expectancy changes: Relation between time series, intervention, and cohort studies. Environ Health 2006;5:1. PMID: 16451722. doi: 10.1186/1476-069X-5-1.CrossRefGoogle Scholar
  13. 13.
    van Donkelaar A, Martin RV, Brauer M, Boys BL. Use of satellite observations for long-term exposure assessment of global concentrations of fine particulate matter. Environ Health Perspect 2015;123:135–43. PMID: 25343779. doi: 10.1289/ehp.1408646.CrossRefGoogle Scholar
  14. 14.
    National Center for Environmental Assessment-RTP Division Office of Research and Development. Integrated Science Assessment for Particulate Matter. Research Triangle Park, NC: U.S. Environmental Protection Agency, 2009.Google Scholar
  15. 15.
    Fann N, Lamson AD, Anenberg SC, Wesson K, Risley D, Hubbell BJ. Estimating the national public health burden associated with exposure to ambient PM2.5 and ozone. Risk Anal 2012;32:81–95. PMID: 21627672. doi: 10.1111/j.1539-6924.2011.01630.x.CrossRefGoogle Scholar
  16. 16.
    Shin HH, Cohen A, Pope CA III, Ezzati M, Lim SS, Hubbell B, et al. Critical issues in combining disparate sources of information to estimate the global burden of disease attributable to ambient fine particulate matter exposure. Working Paper prepared for: Methods for Research Synthesis: A Cross- Disciplinary Workshop. Cambridge, MA: Harvard Center for Risk Analysis, 2013. Available at: http://cdn1.sph.harvard.edu/wp-content/uploads/sites/1273/2013/09/Shin-et-al.-Sept-2013.pdf (Accessed June 30, 2014).Google Scholar
  17. 17.
    Crouse DL, Peters PA, van Donkelaar A, Goldberg MS, Villeneuve PJ, Brion O, et al. Risk of nonaccidental and cardiovascular mortality in relation to longterm exposure to low concentrations of fine particulate matter: A Canadian national-level cohort study. Environ Health Perspect 2012;120(5):708–14. PMID: 22313724. doi: 10.1289/ehp.1104049.CrossRefGoogle Scholar
  18. 18.
    Stieb DM, Judek S, Brand K, Burnett RT, Shin HH. Approximations for estimating change in life expectancy attributable to air pollution in relation to multiple causes of death using a cause modified life table. Risk Anal 2015;35:1468–78. PMID: 25808859. doi: 10.1111/risa.12355.CrossRefGoogle Scholar
  19. 19.
    Air Pollutant Emissions Data Online Data Search. Ottawa: Environment Canada, 2014. Available at: http://www.ec.gc.ca/inrp-npri/donnees-data/ap/index.cfm?lang=En (Accessed August 7, 2014).Google Scholar
  20. 20.
    National Emissions Inventory (NEI) Air Pollutant Emissions Trends Data. Washington, DC: United States Environmental Protection Agency 2014. Available at: http://www.epa.gov/ttnchie1/trends/ (Accessed August 7, 2014).Google Scholar
  21. 21.
    Robichaud A, Ménard R. Multi-year objective analyses of warm season ground-level ozone and PM2.5 over North America using real-time observations and Canadian operational air quality models. Atmos Chem Phys 2014;14:1769–1800. doi: 10.5194/acp-14-1769-2014.CrossRefGoogle Scholar
  22. 22.
    Li Y-R, Gibson JM. Health and air quality benefits of policies to reduce coal- fired power plant emissions: A case study in North Carolina. Environ Sci Technol 2014;48:10019–27. PMID: 25046689. doi: 10.1021/es501358a.CrossRefGoogle Scholar
  23. 23.
    Hojgaard B, Olsen KR, Pisinger C, Tonnesen H, Gyrd-Hansen D. The potential of smoking cessation programmes and a smoking ban in public places: Comparing gain in life expectancy and cost effectiveness. Scand J Public Health 2011;39(8):785–96. PMID: 21976052. doi: 10.1177/1403494811421416.CrossRefGoogle Scholar
  24. 24.
    Jia H, Zack MM, Thompson WW Dube SR. Quality-adjusted life expectancy (QALE) loss due to smoking in the United States. Qual Life Res 2013;22(1):27–35._PMID: 22350530. doi: 10.1007/s11136-012-0118-6.CrossRefGoogle Scholar
  25. 25.
    Tsevat J, Weinstein MC, Williams LW Tosteson AN, Goldman L. Expected gains in life expectancy from various coronary heart disease risk factor modifications. Circulation 1991;83(4):1194–201. PMID: 2013141. doi: 10.1161/01. CIR.83.4.1194.CrossRefGoogle Scholar
  26. 26.
    Laden F, Schwartz J, Speizer FE, Dockery DW. Reduction in fine particulate air pollution and mortality: Extended follow-up of the Harvard Six Cities study. Am J Respir Crit Care Med 2006;173(6):667–72. PMID: 16424447. doi: 10.1164/rccm.200503-443OC.CrossRefGoogle Scholar
  27. 27.
    Wang H, Dwyer-Lindgren L, Lofgren KT, Rajaratnam JK, Marcus JR, Levin- Rector A, et al. Age-specific and sex-specific mortality in 187 countries, 1970-2010: A systematic analysis for the Global Burden of Disease Study 2010. Lancet 2012;380(9859):2071–94. PMID: 23245603. doi: 10.1016/S0140-6736(12)61719-X.CrossRefGoogle Scholar
  28. 28.
    GBD Compare. Seattle, WA: University of Washington Institute for Health Metrics and Evaluation. Available at: http://vizhub.healthdata.org/gbd-compare/ (Accessed November 28, 2014).Google Scholar
  29. 29.
    Brauer M, Amann M, Burnett RT, Cohen A, Dentener F, Ezzati M, et al. Exposure assessment for estimation of the global burden of disease attributable to outdoor air pollution. Environ Sci Technol 2012;46(2):652–60. PMID: 22148428. doi: 10.1021/es2025752.CrossRefGoogle Scholar
  30. 30.
    Fischer PH, Marra M, Ameling CB, Janssen N, Cassee FR. Trends in relative risk estimates for the association between air pollution and mortality in the Netherlands, 1992–2006. Environ Res 2011;111(1):94–100. PMID: 20970785. doi: 10.1016/j.envres.2010.09.010.CrossRefGoogle Scholar
  31. 31.
    Shin HH, Stieb DM, Jessiman B, Goldberg MS, Brion O, Brook J, et al. A temporal, multicity model to estimate the effects of short-term exposure to ambient air pollution on health. Environ Health Perspect 2008;116(9):1147–53. PMID: 18795155. doi: 10.1289/ehp.11194.CrossRefGoogle Scholar
  32. 32.
    Shin HH, Burnett RT, Stieb DM, Jessiman B. Measuring public health accountability of air quality management. Air Qual Atmos Health 2009; 2:11–20. doi: 10.1007/s11869-009-0029-z.CrossRefGoogle Scholar
  33. 33.
    Shin HH, Stieb D, Burnett R, Takahara G, Jessiman B. Tracking national and regional spatial-temporal mortality risk associated with NO2 concentrations in Canada: A Bayesian hierarchical two-level model. Risk Anal 2012;32(3):513–30. PMID: 21980998. doi: 10.1111/j.1539-6924.2011.01684.x.CrossRefGoogle Scholar

Copyright information

© The Canadian Public Health Association 2015

Authors and Affiliations

  • David M. Stieb
    • 1
    • 2
    Email author
  • Stan Judek
    • 3
  • Aaron van Donkelaar
    • 4
  • Randall V. Martin
    • 4
    • 5
  • Kevin Brand
    • 6
  • Hwashin H. Shin
    • 3
    • 7
  • Richard T. Burnett
    • 2
    • 3
  • Marc H. Smith-Doiron
    • 3
  1. 1.Population Studies Division, Health CanadaEnvironments & Consumer Safety Branch, Health CanadaVancouverCanada
  2. 2.School of Epidemiology, Public Health and Preventive MedicineUniversity of OttawaOttawaCanada
  3. 3.Population Studies Division, Health CanadaOttawaCanada
  4. 4.Department of Physics and Atmospheric ScienceDalhousie UniversityHalifaxCanada
  5. 5.Harvard-Smithsonian Center for AstrophysicsCambridgeUSA
  6. 6.Telfer School of ManagementUniversity of OttawaOttawaCanada
  7. 7.Department of Mathematics and StatisticsQueen’s UniversityKingstonUSA

Personalised recommendations