Advertisement

Canadian Journal of Public Health

, Volume 106, Issue 6, pp e388–e394 | Cite as

Major urban road characteristics and injured pedestrians: A representative survey of intersections in Montréal, Quebec

  • Patrick MorencyEmail author
  • Judith Archambault
  • Marie-Soleil Cloutier
  • Mathieu Tremblay
  • Céline Plante
Quantitative Research

Abstract

OBJECTIVES: In urban settings, pedestrian fatalities and injuries are concentrated on major roads. This study aims to describe urban intersections with major roads (arterials and collector roads) and explore the association between intersection characteristics and injured pedestrians.

METHODS: From a stratified random sampling in Montréal, Quebec, 512 intersections were selected and their characteristics collected. The number of injured pedestrians from 1999 to 2008 was obtained from ambulance services. Binomial negative regression models (including IRR: incidence rate ratios) were calculated to determine associations between intersection characteristics and injured pedestrians: i) at all intersections; ii) at intersections with multi-lane roads and iii) at signalized intersections with available vehicle and pedestrian counts.

RESULTS: Major intersections had more traffic lanes (3.8 vs. 1.7, p < 0.01) and longer pedestrian crossings (18.8 m vs. 12.7 m, p < 0.01) than minor intersections. Bus stops were also more frequent at these intersections (75% vs. 6%, p < 0.01). Overall, each additional traffic lane was associated with a 75% increase in the number of injured pedestrians (IRR = 1.75; 95% confidence interval [CI] = 1.41–2.18). At intersections with multi-lane roads, a fourth branch (IRR = 2.40; 95% CI = 1.53–3.77), vehicles parked within 5 m of the intersection (IRR = 2.40; 95% CI = 1.64–3.51), and marked crosswalks (IRR = 1.79; 95% CI = 1.08–2.95) significantly increased the number of injured pedestrians. Raised medians had no significant protective effect.

CONCLUSIONS: The results show that besides traffic and pedestrian volumes, intersection characteristics contribute to pedestrian injuries. The reduction of traffic lanes, parking prohibition near intersections and implementation of appropriate pedestrian refuge areas would improve pedestrian safety.

Key Words

Injuries pedestrian major roads intersections urban health 

Mots Clés

blessés piétons artères intersections santé urbaine 

Résumé

OBJECTIFS: Décrire les intersections avec routes majeures (artère, collectrice) en milieu urbain, et explorer l’association entre les caractéristiques de ces intersections et le nombre de piétons blessés.

MÉTHODES: Les caractéristiques de 512 intersections (Montréal, Québec), sélectionnées via un échantillonnage aléatoire stratifié ont été mesurées. Le nombre de piétons blessés provient des services ambulanciers (1999–2008). L’association entre les caractéristiques des intersections et le nombre de piétons blessés (RTI: rapports de taux d’incidence) a été quantifié par des régressions binomiales négatives: 1) incluant toutes les intersections; 2) incluant les intersections de rues ayant plusieurs voies de circulation; 3) incluant les intersections pour lesquelles des comptages de véhicules et de piétons étaient disponibles.

RÉSULTATS: Les intersections majeures ont davantage de voies de circulation (3,8 c. 1,7, p < 0,01) et des traverses pour piétons plus longues (18,8 m c. 12,7 m, p < 0,01) que les intersections de rues locales. Les arrêts d’autobus y sont plus fréquents (75 % c. 6 %, p < 0,01). Globalement, chaque voie additionnelle de circulation est associée à une augmentation de 75 % du nombre de piétons blessés (RTI = 1,75; IC95% = 1,41–2,18). Aux intersections de rues ayant plusieurs voies de circulation, une quatrième branche (RTI = 2,40; IC95% = 1,53–3,77), la présence de véhicules stationnés à moins de 5 m de l’intersection (RTI = 2,40; IC95% = 1,64–3,51) et le marquage de passages pour piétons (RTI = 1,79; IC95% = 1,08–2,95) sont significativement associés à une augmentation du nombre de piétons blessés.

CONCLUSION: Les résultats démontrent qu’au-delà des volumes de trafic et de piétons, les caractéristiques des intersections avec routes majeures contribuent au plus grand nombre de blessés piétons. La réduction des voies de circulation, l’interdiction de stationner près des coins de rue et d’autres aménagements pertinents pourraient y améliorer la sécurité des piétons en milieu urbain.

References

  1. 1.
    National Highway Traffic Safety Administration (NHTSA). Traffic Safety Facts 2010: Pedestrians. Washington, DC: U.S. Department of Transportation, 2012. Available at: http://www-nrd.nhtsa.dot.gov/Pubs/811625.pdf (Accessed May 8, 2014).Google Scholar
  2. 2.
    Direction de la recherche et du développement en sécurité routière. Dossiers statistiques - accidents, parc automobile, permis de conduire: bilan 2011. Québec, QC: Société d’assurance-automobile du Québec, 2012; 214 p.Google Scholar
  3. 3.
    Dumbaugh E, Rae R. Safe urban form: Revisiting the relationship between community design and traffic safety. J Am Plann Assoc 2009;75(3):309–29. doi: 10.1080/01944360902950349.CrossRefGoogle Scholar
  4. 4.
    National Highway Traffic Safety Administration (NHTSA). National Pedestrian Crash Report. DOT HS 810 968. Washington: U.S. Department of Transportation, 2008; 63 p.Google Scholar
  5. 5.
    Schuurman N, Cinnamon J, Crooks VA, Hameed SM. Pedestrian injury and the built environment: An environmental scan of hotspots. BMC Public Health 2009;9:233. PMID: 19602225. doi: 10.1186/1471-2458-9-233.CrossRefGoogle Scholar
  6. 6.
    Morency P, Cloutier MS. From targeted “black spots” to area-wide pedestrian safety. Inj Prev 2006;12(6):360–64. PMID: 17170182. doi: 10.1136/ip.2006.013326.CrossRefGoogle Scholar
  7. 7.
    Morency P, Gauvin L, Tessier F, Miranda-Moreno L, Cloutier MS, Morency C. Analyse désagrégée des facteurs environnementaux associés au nombre d’enfants blessés par un véhicule à moteur en milieu urbain. Cahiers de Géographie du Québec 2011;55(156):449–68. doi: 10.7202/1008888ar.CrossRefGoogle Scholar
  8. 8.
    Lovegrove GR, Sayed T. Macro-level collision prediction models for evaluating neighbourhood traffic safety. Can J Civil Eng 2006;33(5):609–21. doi: 10.1139/l06-013.CrossRefGoogle Scholar
  9. 9.
    Wier M, Weintraub J, Humphreys EH, Seto E, Bhatia R. An area-level model of vehicle pedestrian injury collisions with implications for land use and transportation planning. Accid Anal Prev 2009;41:137–45. PMID: 19114148. doi: 10.1016/j.aap.2008.10.001.CrossRefGoogle Scholar
  10. 10.
    Morency P, Gauvin L, Plante C, Fournier F, Morency C. Neighbourhood social inequalities in road traffic injuries: The influence of traffic volume and road design. Am J Public Health 2012; 102(6), 1112–19. PMID: 22515869. doi: 10.2105/AJPH.2011.300528.CrossRefGoogle Scholar
  11. 11.
    Ewing R, Dumbaug E. The built environment and traffic safety: A review of empirical evidence. J Plann Lit 2009;23(4):347–67. doi: 10.1177/0885412209335553.CrossRefGoogle Scholar
  12. 12.
    World Road Association (PIARC). Road Safety Manual, 1st ed., UK: Route 2 Market Limited, 2004; 603 p.Google Scholar
  13. 13.
    Miranda-Moreno LF, Morency P, El-Geneidy AM. The link between built environment, pedestrian activity and pedestrian-vehicle collision occurrence at signalized intersections. Accid Anal Prev 2011;43(5):1624–34. PMID: 21658488. doi: 10.1016/j.aap.2011.02.005.CrossRefGoogle Scholar
  14. 14.
    Lyon C, Persaud B. Pedestrian collision prediction models for Urban intersections - Paper No. 02-3609. Transp Res Rec 2002;1818:102–7. doi: 10.3141/1818-16.CrossRefGoogle Scholar
  15. 15.
    Shahla F, Shalaby AS, Persaud NB, Hadayeghi A. Analysis of transit safety at signalized intersections in Toronto, Ontario, Canada. Transp Res Rec 2009;2102:108–14. doi: 10.3141/2102-14.CrossRefGoogle Scholar
  16. 16.
    Hess PM, Vernez Moudon AV, Matlick JM. Pedestrian safety and transit corridors. J Public Transp 2004;7(2):73–93.CrossRefGoogle Scholar
  17. 17.
    Haddon W Jr. Energy damage and the 10 countermeasure strategies. Inj Prev 1995;1(1):40–44. PMID: 9345992.CrossRefGoogle Scholar
  18. 18.
    Retting RA, Van Houten R, Malenfant L, Van Houten J, Farmer CM. Special signs and pavement markings improve pedestrian safety. J Inst Transp Eng 1996;66(12):28–35.Google Scholar
  19. 19.
    Hauck J, Bates L. Well-marked crosswalks are a pedestrian’s best friends. Rural and Urban Roads 1979;17(3):26–28.Google Scholar
  20. 20.
    Herms B. Pedestrian Crosswalk Study: Crashes in Painted and Unpainted Crosswalks. Record No. 406. Washington: Transportation Research Board, 1972.Google Scholar
  21. 21.
    Jones TL, Tomcheck P. Pedestrian accidents in marked and unmarked crosswalks: A quantitative study. J Inst Transp Eng 2000;70(9):42–46.Google Scholar
  22. 22.
    Gibby AR, Stites JL, Thurgood GS, Ferrara TC. Evaluation of Marked and Unmarked Crosswalks at Intersections in California. Report No. FHWA/CA/ TO-94/1. Chico State University, CA: Federal Highway Administration (FHWA), 1994.Google Scholar
  23. 23.
    Leden L, Garder P, Johansson C. Safe pedestrian crossings for children and elderly. Accid Anal Prev 2006;38(2):289–94. PMID: 16263073. doi: 10.1016/j.aap.2005.09.012.CrossRefGoogle Scholar
  24. 24.
    Koepsell T, McCloskey L, Wolf M, Vernez Moudon A, Buchner D, Kraus J, et al. Crosswalk markings and the risk of pedestrian-motor vehicle collisions in older pedestrians. JAMA 2002;288(17):2136–43. PMID: 12413373.CrossRefGoogle Scholar
  25. 25.
    Zegeer C, Stewart J, Huang H, Lagerwey P. Safety Effects of Marked vs. Unmarked Crosswalks at Uncontrolled Locations: Final Report and Recommended Guidelines. FHWA-HRT-04-100. McLean, VA: U.S. Department of Transportation, Federal Highway Administration (FHWA), 2005; 104 p.Google Scholar
  26. 26.
    Retting RA, Ferguson SA, McCartt AT. A review of evidence-based traffic engineering measures designed to reduce pedestrian-motor vehicle crashes. Am J Public Health 2003;93(9):1456–63. PMID: 12948963.CrossRefGoogle Scholar
  27. 27.
    Morency P, Archambault J, Cloutier MS, Tremblay M, Plante C, Dubé AS. Sécurité des piétons en milieu urbain: enquête sur les aménagements routiers aux intersections. Montréal, QC: Agence de la santé et des services sociaux, direction de santé publique, 2013; 34 p.Google Scholar
  28. 28.
    Garder PE. The impact of speed and other variables on pedestrian safety in Maine. Accid Anal Prev 2004;36(4):533–42. PMID: 15094405. doi: 10.1016/S0001-4575(03)00059-9.CrossRefGoogle Scholar
  29. 29.
    Toronto Centre for Active Transportation. Complete Streets by Design; Toronto Streets Redesigned for All Ages and Abilities. 2012; 25 p. Available at http://completestreetsforcanada.ca/complete-streets-design (Accessed March 22._2015)Google Scholar
  30. 30.
    Hess PM. Avenues or arterials: The struggle to change street building practices in Toronto, Canada. J Urban Des 2009;14(1):1–28. doi: 10.1080/13574800802451049.CrossRefGoogle Scholar

Copyright information

© The Canadian Public Health Association 2015

Authors and Affiliations

  • Patrick Morency
    • 1
    • 2
    Email author
  • Judith Archambault
    • 1
    • 2
  • Marie-Soleil Cloutier
    • 3
  • Mathieu Tremblay
    • 3
  • Céline Plante
    • 2
  1. 1.Département de médecine sociale et préventiveUniversité de MontréalMontréalCanada
  2. 2.Direction de santé publique de MontréalMontréalCanada
  3. 3.Institut National de la Recherche ScientifiqueCentre Urbanisation Culture SociétéMontréalCanada

Personalised recommendations