Advertisement

Canadian Journal of Public Health

, Volume 106, Issue 2, pp e10–e16 | Cite as

Space and time clustering of adolescents’ emergency department use and post-visit physician care for mood disorders in Alberta, Canada: A population-based 9-year retrospective study

  • Rhonda J. Rosychuk
  • Amanda S. Newton
  • Xiaoqing Niu
  • Liana Urichuk
Quantitative Research

Abstract

Objectives

We used a statistical cluster detection technique to identify geographic areas with higher numbers of adolescents who 1) presented to an emergency department (ED) for a mood disorder, and 2) were without a physician follow-up visit for mental health within 30 days of an ED visit.

Methods

We conducted a population-based analysis of ED visits (n = 6,829) made by adolescents aged 10–17 years (n = 5,877) using administrative databases from Alberta, Canada (2002–2011). Statistical analyses included summaries, directly standardized rates (DSRs per 100,000), and the spatial scan cluster test.

Results

Sex- and age-adjusted DSRs increased by 21.8% from 2002 to 2011 (160.2/100,000 to 195.1/100,000). Northern Alberta had consistently higher DSRs than other areas of the province and areas in the north, southwest and central parts were identified as geographical and temporal clusters with relative risks of 1.67, 2.78 and 1.42 respectively. Many of these areas also had higher relative risks for adolescents who did not have a mental health-related visit with a physician within 30 days of the ED visit. About 32% (n = 1,870) did not have a post-ED physician visit.

Conclusion

The potential clusters identified may represent geographic areas with higher disease severity or more acute care sought because of less availability of other services. The clusters are not all likely to have occurred by chance and further investigations and discussions with local health care policy-makers about reducing the number of ED visits for mood disorders and increasing physician follow-up after the ED visit is an important next step.

Key Words

Adolescence cluster analysis space-time clustering disease clustering emergency services mood disorders 

Résumé

Objectifs

Nous avons employé une technique de détection statistique des grappes de cas pour repérer les zones géographiques comportant un plus grand nombre de jeunes qui: 1) s’étaient présentés aux urgences pour un trouble de l’humeur et 2) qui n’avaient pas eu de visite de suivi en santé mentale avec unmédecin dans un délai de 30 jours de leur visite aux urgences.

Méthode

Nous avons mené une analyse en population des visites aux urgences (n = 6 829) effectuées par les jeunes de 10 à 17 ans (n = 5 877) en utilisant les bases de données administratives de l’Alberta, au Canada (2002–2011). Nos analyses statistiques ont porté sur les résumés, sur les taux directement standardisés (TDS p. 100 000 habitants) et sur un test de balayage spatial pour identifier les grappes.

Résultats

Les TDS rajustés selon le sexe et l’âge ont augmenté de 21,8 % entre 2002 et 2011 (160,2/100 000 à 195,1/100 000). Le nord de l’Alberta présentait des TDS systématiquement plus élevés que ceux d’autres zones de la province, et les zones du nord, du sud-ouest et du centre ont été identifiées comme ayant des grappes géographiques et temporelles avec des risques relatifs de 1,67, 2,78 et 1,42, respectivement. Beaucoup de ces zones avaient également des risques relatifs plus élevés pour les jeunes n’ayant pas visité un médecin pour des raisons de santé mentale dans un délai de 30 jours après une visite aux urgences. Environ 32% (n = 1 870) n’avaient pas vu de médecin après leur visite aux urgences.

Conclusion

Les grappes potentielles repérées pourraient représenter des zones géographiques où la gravité des maladies ou la demande de soins actifs est plus élevée en raison de la moins grande disponibilité d’autres services. Les grappes ne sont pas toutes susceptibles de s’être formées aléatoirement; il est donc important pour la suite des choses de pousser la recherche et les discussions avec les responsables locaux des politiques de soins de santé en vue de réduire le nombre de visites aux urgences pour des troubles de l’humeur et d’accroître les suivis médicaux après les visites aux urgences.

Mots Clés

adolescence; analyse en grappes; agrégation spatiotemporelle; agrégation de cas de maladies; service urgences; troubles de l’humeur 

References

  1. 1.
    Cheung AH, Dewa, CS. Canadian community health survey: Major depressive disorder and suicidality in adolescents. Healthcare Policy 2006;2:76–78.PubMedPubMedCentralGoogle Scholar
  2. 2.
    Whiteford HA, Degenhardt L, Rehm J, Baxter AJ, Ferrari AJ, Erskine HE, et al. Global burden of disease attributable to mental and substance use disorders: Findings from the Global Burden of Disease Study 2010. Lancet 2013;382: 1575–86. doi: 10.1016/S0140-6736(13)61611-6.CrossRefGoogle Scholar
  3. 3.
    Zisook S, Lesser I, Stewart JW, Wisniewski SR, Balasubramani GK, Fava M, et al. Effect of age at onset on the course of major depressive disorder. Am J Psychiatry 2007;164:1539–46. doi: 10.1176/appi.ajp.2007.06101757. PMID: 17898345.CrossRefGoogle Scholar
  4. 4.
    Wood JJ, Lynne-Landsman SD, Langer DA, Wood PA, Clark SL, Eddy JM, et al. School attendance problems and adolescents psychopathology: Structural cross-lagged regression models in three longitudinal data sets. Child Dev 2012;83:351–66. doi: 10.1111/j.1467-8624.2011.01677.x. PMID: 22188462.CrossRefGoogle Scholar
  5. 5.
    McShane G, Walter G, Rey, JM. Characteristics of adolescents with school refusal. Aust N Z J Psychiatry 2001;35:822–26. doi: 10.1046/j.1440-1614.2001. 00955.x.CrossRefGoogle Scholar
  6. 6.
    Birmaher B, Ryan ND, Williamson DE, Brent DA, Kaufman J, Dahl RE, et al. Childhood and adolescent depression: A review of the past 10 years. Part I. J Am Acad Child Adolesc Psychiatry 1996;35:1427–39.CrossRefGoogle Scholar
  7. 7.
    Cheung AH, Dewa, CS. Mental health service use among adolescents and young adults with major depressive disorder and suicidality. Can J Psychiatry 2007;52:228–32.CrossRefGoogle Scholar
  8. 8.
    Newton AS, Ali S, Johnson DW, Haines C, Rosychuk RJ, Keaschuk RA, et al. A four-year review of pediatric mental health emergencies in Alberta. Can J Emerg Med 2009;11:447–54.Google Scholar
  9. 9.
    Newton AS, Ali S, Johnson DW, Haines C, Rosychuk RJ, Keaschuk RA, et al. Who comes back? Characteristics and predictors of return to emergency department services for pediatric mental health care. Acad Emerg Med 2010; 17:177–86.CrossRefGoogle Scholar
  10. 10.
    Mental Health Commission of Canada. Child and Youth. Available at: https://doi.org/www.mentalhealthcommission.ca/English/issues/child-and-youth?routetoken= cfd393bd52ed4aa54a29367f6f0c87e4&terminitial=20 (Accessed July 2, 2014).Google Scholar
  11. 11.
    Alberta Health and Wellness. Ambulatory Care in Alberta Using Ambulatory Care Classification System Data. Edmonton, AB: Alberta Health and Wellness, 2004.Google Scholar
  12. 12.
    Canadian Institute for Health Information. The Canadian Enhancement of ICD-10 (International Statistical Classification of Diseases and Related Health Problems, Tenth Revision). Ottawa, ON: Canadian Institute for Health Information, 2001.Google Scholar
  13. 13.
    World Health Organization. International Statistical Classification of Diseases and Related Health Problems. Geneva, Switzerland: World Health Organization, 2010.Google Scholar
  14. 14.
    Practice Management Information Corporation. International Classification of Diseases and Related Health Problems (9th revision, 3rd, ed. Clinical Modification). Los Angeles, CA: Practice Management Information Corporation, 1989.Google Scholar
  15. 15.
    Kulldorff M, Nagarwalla N. Spatial disease clusters: Detection and inference. Stat Med 1995;14:799–810. doi: 10.1002/sim.4780140809. PMID: 7644860.CrossRefGoogle Scholar
  16. 16.
    Fay M, Feuer E. Confidence intervals for directly standardized rates: A method based on the Gamma distribution. Stat Med 1997;16:791–801. doi: 10.1002/(SICI)1097-0258(19970415)16:7<791::AID-SIM500>3.0.CO;2-#. PMID: 9131766.CrossRefGoogle Scholar
  17. 17.
    Spotfire S+ 8.1 Workbench [computer program]. Version 3.4. Palo Alto, CA: TIBCO Software Inc., 2008.Google Scholar
  18. 18.
    SaTScan v9.2: Software for the spatial and space-time scan statistics [computer program]. Available at: https://doi.org/www.satscan.org (Accessed December 8, 2013).Google Scholar
  19. 19.
    Manifold System 8.0 Professional Edition. Build 8.0.7.0 [computer program]. Available at: https://doi.org/www.manifold.net (Accessed September 15, 2008).Google Scholar
  20. 20.
    Child and Youth Data Laboratory. CYDL Project Summary Report. Edmonton, AB, 2012.Google Scholar
  21. 21.
    Alberta Health Services. Needs Weighted Population to Actual Population by Health Sector. Internal Strategic Planning Report. Edmonton, AB: Alberta Health Services, 2012.Google Scholar
  22. 22.
    Predy GN, Lightfoot P, Edwards J, Sevcik M, Fraser-Lee N, Zhang J, et al. How healthy are we? 2010 Report of the Senior Medical Officer of Health, Population and Public Health, Alberta Health Services. Edmonton, AB: Alberta Health Services, 2011.Google Scholar
  23. 23.
    Salinas-Pérez JA, García-Alonso CR, Molina-Parrilla C, Jordà-Sampietro E, Salvador-Carulla L. GEOSCAT GroupIdentification and location of hot and cold spots of treated prevalence of depression in Catalonia (Spain). Int J Health Geogr 2012;11:36.CrossRefGoogle Scholar
  24. 24.
    Exeter DJ, Boyle, PJ. Does young adult suicide cluster geographically in Scotland? J Epidemiol Community Health 2007;61:731–36.CrossRefGoogle Scholar
  25. 25.
    Jones P, Gunnell D, Platt S, Scourfield J, Lloyd K, Huxley P, et al. Identifying probable suicide clusters in Wales using national mortality data. PLoS One 2013;8(8):e71713.Google Scholar
  26. 26.
    Mesoudi A. The cultural dynamics of copycat suicide. PLoS One 2009;4(9): e7252.Google Scholar
  27. 27.
    Rosychuk RJ, Colman I, Rowe, BH. Comparison of cluster detection using patients and events of medically treated self-inflicted injuries in Alberta, Canada. Health Serv Outcomes Res Method 2009;9:100–16.CrossRefGoogle Scholar
  28. 28.
    Rosychuk RJ, Yau C, Colman I, Schopflocher D, Rowe, BH. Statistical disease cluster surveillance of medically treated self-inflicted injuries in Alberta, Canada. Chron Dis Can 2006;27:68–76.Google Scholar

Copyright information

© The Canadian Public Health Association 2015

Authors and Affiliations

  • Rhonda J. Rosychuk
    • 1
    • 2
  • Amanda S. Newton
    • 1
    • 2
  • Xiaoqing Niu
    • 1
  • Liana Urichuk
    • 3
  1. 1.Department of PediatricsUniversity of AlbertaEdmontonCanada
  2. 2.Women & Children’s Health Research InstituteEdmontonCanada
  3. 3.Alberta Health ServicesEdmontonCanada

Personalised recommendations