Canadian Journal of Public Health

, Volume 106, Issue 3, pp e95–e100 | Cite as

Variations over four decades in body mass index trajectories prior to diagnosis of diabetes mellitus: The Manitoba Follow-up Study, 1948–2007

  • Dessalegn Y. MelesseEmail author
  • Shiva S. Halli
  • Robert B. Tate
Quantitative Research



The aim of the study was to explore the variations in body mass index (BMI) trajectories during the 20 years before diagnosis of type 2 diabetes mellitus (T2DM) over four decades between 1968 and 2007.


Longitudinal measurements of BMI from 437 men, all with a diagnosis of T2DM, were used in the analysis. A mixed method approach was used to fit individual patterns of BMI measurements during the 20 years before diagnosis of T2DM.


The mean BMI at diagnosis was 26.7 kg/m2 (95% confidence interval, 26.4-27.1). Compared with men whose condition was diagnosed between 1968 and 1977, for men with a diagnosis between 1978 and 2007 the mean BMI about 10 years before diagnosis significantly increased by 0.92 to 1.54 BMI units. Decades also varied in how long there was a persistent increase in BMI during the 20 years before diagnosis. The rate of change in mean BMI among men whose T2DM was diagnosed in the most recent two decades increased by 8.8% to 22.6% during the 10-year interval before diagnosis, but there was no significant difference among men given a diagnosis between 1978 and 1987. The quadratic trend of BMI prior to diagnosis was also significantly affected by age at diagnosis.


The BMI trajectories during the 20 years leading up to T2DM varied by decade of diagnosis. The increase in BMI persisted for much longer among relatively younger men with a diagnosis in more recent decades. Strategies to prevent T2DM, informed by the pattern of BMI trajectories, should be customized to consider a potential age-period effect.

Key words

Diabetes mellitus body mass index trajectories men longitudinal study Canada 



Le but de l’étude était d’analyser les écarts dans les trajectoires de l’indice de masse corporelle (IMC) au cours des 20 années antérieures à un diagnostic de diabète sucré de type 2 (DST2) sur une période de quatre décennies (1968 à 2007).


Les mesures longitudinales de l’IMC de 437 hommes ayant tous un diagnostic de DST2 ont été analysées. Nous avons employé une approche à méthodes mixtes pour intégrer les trajectoires individuelles des mesures de l’IMC au cours des 20 années antérieures au diagnostic de DST2.


L’IMC moyen au diagnostic était de 26,7 kg/m2 (intervalle de confiance de 95 %, 26,4-27,1). Comparativement aux hommes chez qui la maladie a été diagnostiquée entre 1968 et 1977, pour les hommes ayant reçu leur diagnostic entre 1978 et 2007, l’IMC moyen environ 10 ans avant le diagnostic présentait une hausse significative de 0,92 à 1,54 unité d’IMC. La durée de la période pendant laquelle il y avait eu une hausse persistante de l’IMC au cours des 20 années antérieures au diagnostic variait également selon la décennie. Le taux de changement de l’IMC moyen chez les hommes dont le DST2 avait été diagnostiqué au cours des deux décennies les plus récentes a augmenté de 8,8 % à 22,6 % au cours de l’intervalle de 10 ans précédant le diagnostic, mais il n’y avait aucun écart significatif chez les hommes ayant reçu un diagnostic entre 1978 et 1987. La tendance quadratique de l’IMC avant le diagnostic était aussi significativement affectée par l’âge au diagnostic.


Les trajectoires de l’IMC au cours des 20 années antérieures au DST2 variaient selon la décennie du diagnostic. L’augmentation de l’IMC persistait beaucoup plus longtemps chez les hommes relativement plus jeunes diagnostiqués au cours des décennies plus récentes. Les stratégies de prévention du DST2, éclairées par les trajectoires de l’IMC, devraient être individualisées pour tenir compte d’un éventuel effet selon l’âge et la période.

Mots Clés

diabète sucré trajectoires de l’indice de masse corporelle hommes étude longitudinale Canada 


  1. 1.
    Sharma AA, Lau DCW. Obesity and type 2 diabetes mellitus. Can J Diabetes 2013;37:63–64.CrossRefGoogle Scholar
  2. 2.
    Finucane MM, Stevens GA, Cowan MJ, Danaei G, Lin JK, Paciorek CJ, et al. National, regional, and global trends in body-mass index since 1980: Systematic analysis of health examination surveys and epidemiological studies with 960 country-years and 9.1 million participants. Lancet 2011;377(9765):557–67. PMID: 21295846. doi: 10.1016/S0140-6736(10)62037-5.CrossRefGoogle Scholar
  3. 3.
    World Health Organization. Global Status Report on Non-communicable Diseases, 2010. Available at: (Accessed June 5, 2014).Google Scholar
  4. 4.
    Smyth S, Heron A. Diabetes and obesity: The twin epidemics. Nat Med 2006;12(1):75–80. PMID: 16397575.CrossRefGoogle Scholar
  5. 5.
    Abegunde DO, Mathers CD, Adam T, Ortegon M, Strong K. The burden and costs of chronic diseases in low-income and middle-income countries. Lancet 2007;370(9603):1929–38.CrossRefGoogle Scholar
  6. 6.
    Danaei G, Finucane MM, Lu Y, Singh GM, Cowan MJ, Paciorek CJ, et al. National, regional, and global trends in fasting plasma glucose and diabetes prevalence since 1980: Systematic analysis of health examination surveys and epidemiological studies with 370 country-years and 2.7 million participants. Lancet 2011;378(9785):31–40. PMID: 21705069. doi: 10.1016/S0140-6736(1l)60679-X.CrossRefGoogle Scholar
  7. 7.
    Lane S, Levy AR, Mukherjee J, Sambrook J, Tildesley H. The impact on utilities of differences in body weight among Canadian patients with type 2 diabetes. Curr Med Res Opin 2014;30(7):1267–73. PMID: 24588550. doi: 10.1185/03007995.2014.899207.CrossRefGoogle Scholar
  8. 8.
    Norris SL, McNally TK, Zhang X, Burda B, Chan B, Chowdhury FM, et al. Published norms underestimate the health-related quality of life among persons with type 2 diabetes. J Clin Epidemiol 2011;64(4):358–65. PMID: 20800442. doi: 10.1016/j.jclinepi.2010.04.016.CrossRefGoogle Scholar
  9. 9.
    Flegal KM, Carroll MD, Kit BK, Ogden CL. Prevalence of obesity and trends in the distribution of body mass index among US adults, 1999–2010. JAMA 2012;307(5):491–97. PMID: 22253363. doi: 10.1001/jama.2012.39.CrossRefGoogle Scholar
  10. 10.
    Ganz ML, Wintfeld N, Li Q, Alas V, Langer J, Hammer M. The association of body mass index with the risk of type 2 diabetes: A case-control study nested in an electronic health records system in the United States. Diabetol Metab Syndr 2014;6(1):50. PMID: 24694251. doi: 10.1186/1758-5996-6-50.CrossRefGoogle Scholar
  11. 11.
    Menke A, Rust KF, Fradkin J, Cheng YJ, Cowie CC. Associations between trends in race/ethnicity aging, and body mass index with diabetes prevalence in the United States: A series of cross-sectional studies. Ann Intern Med 2014;161(5):328–35. PMID: 25178569. doi: 10.7326/M14-0286.CrossRefGoogle Scholar
  12. 12.
    Ishikawa-Takata K, Ohta T, Moritaki K, Gotou T, Inoue S. Obesity, weight change and risks for hypertension, diabetes and hypercholesterolemia in Japanese men. Eur J Clin Nutr 2002;56(7):601–7. PMID: 12080398.CrossRefGoogle Scholar
  13. 13.
    Carey VJ, Walters EE, Colditz GA, Solomon CG, Willet WC, Rosner BA, et al. Body fat distribution and risk of non-insulin-dependent diabetes mellitus in women. The Nurses’ Health Study. Am J Epidemiol 1997;145(7): 614–19.CrossRefGoogle Scholar
  14. 14.
    Ross R, Janiszewski PM. Is weight loss the optimal target for obesity-related cardiovascular disease risk reduction? Can J Cardiol 2008;24(Suppl D):25D–31D. PMID: 18787733.CrossRefGoogle Scholar
  15. 15.
    Power C, Thomas C. Changes in BMI, duration of overweight and obesity, and glucose metabolism: 45 years of follow-up of a birth cohort. Diabetes Care 2011;34(9):1986–91. PMID: 21775760. doi: 10.2337/dc10-1482.CrossRefGoogle Scholar
  16. 16.
    Brancati FL, Wang NY, Mead LA, Liang KY, Klag MJ. Body weight patterns from 20 to 49 years of age and subsequent risk for diabetes mellitus: The Johns Hopkins Precursors Study. Arch Intern Med 1999;159(9):957–63. PMID: 10326937.CrossRefGoogle Scholar
  17. 17.
    Koh-Banerjee P, Wang Y, Hu FB, Spiegelman D, Willett WC, Rimm EB. Changes in body weight and body fat distribution as risk factors for clinical diabetes in US men. Am J Epidemiol 2004;159(12):1150–59. PMID: 15191932.CrossRefGoogle Scholar
  18. 18.
    Schienkiewitz A, Schulze MB, Hoffmann K, Kroke A, Boeing H. Body mass index history and risk of type 2 diabetes: Results from the European Prospective Investigation into Cancer and Nutrition (EPIC)-Potsdam Study. Am J Clin Nutr 2006;84(2):427–33. PMID: 16895894.CrossRefGoogle Scholar
  19. 19.
    Wannamethee SG, Shaper AG, Walker M. Overweight and obesity and weight change in middle aged men: Impact on cardiovascular disease and diabetes. J Epidemiol Community Health 2005;59(2):134–39. doi: 10.1136/jech.2003.015651.CrossRefGoogle Scholar
  20. 20.
    Livshits G, Malkin I, Williams FM, Hart DJ, Hakim A, Spector TD. Longitudinal study of variation in body mass index in middle-aged UK females. Age (Dordr) 2012;34(5):1285–94. PMID: 21853263.CrossRefGoogle Scholar
  21. 21.
    Tate RB, Cuddy TE, Mathewson FA. Cohort profile: The Manitoba Follow-up Study (MFUS). Int J Epidemiol 2014;e1–e9. PMID: 25064641. doi: 10.1093/ije/dyul41.Google Scholar
  22. 22.
    Tate RB, Michaels L, Cuddy TE, Bayomi DJ. Clinical diagnoses before age 75 and men’s survival to their 85th birthday: The Manitoba Follow-up Study. Gerontologist 2013;53(1):133–41.PMID: 22547087. doi: 10.1093/geront/gns050.CrossRefGoogle Scholar
  23. 23.
    Tate RB, Manfreda J, Cuddy TE. The effect of age on risk factors for ischemic heart disease: The Manitoba Follow-Up Study, 1948–1993. Ann Epidemiol 1998;8(7):415–21. PMID: 9738687.CrossRefGoogle Scholar
  24. 24.
    Twisk JWR. Applied Longitudinal Data Analysis for Epidemiology: A Practical Guide. 2nd ed. New York, NY: Cambridge University Press, 2013.CrossRefGoogle Scholar
  25. 25.
    Singer JD, Willett JB. Applied Longitudinal Data Analysis: Modeling Change and Event Occurrence. New York: Oxford University Press, 2003.CrossRefGoogle Scholar
  26. 26.
    Fitzmaurice GM, Laird NM, Ware JH Applied Longitudinal Analysis. 2nd ed. Hoboken, NJ: Wiley, 2011.CrossRefGoogle Scholar
  27. 27.
    Institute Inc. SAS 9.2 Help and Documentation. Cary NC: SAS Institute Inc. SAS 2000-2004;9.2.Google Scholar
  28. 28.
    Gotay CC, Katzmarzyk PT, Janssen I, Dawson MY, Aminoltejari K, Bartley NL. Updating the Canadian obesity maps: An epidemic in progress. Can J Public Health 2012;104(1):e64–e68. PMID: 23618109.PubMedGoogle Scholar
  29. 29.
    Twells LK, Gregory DM, Reddigan J, Midodzi WK. Current and predicted prevalence of obesity in Canada: A trend analysis. CMAJ Open 2014;2(1):e18–e26. doi: 10.9778/cmajo.20130016.CrossRefGoogle Scholar
  30. 30.
    Prabhakaran D, Anand SS. The metabolic syndrome: An emerging risk state for cardiovascular disease. Vase Med 2004;9(1):55–68. PMID: 15230489.CrossRefGoogle Scholar
  31. 31.
    Fransoo R, Martens P, Prior H, Chateau D, McDougall C, Schultz J, et al. Adult Obesity in Manitoba: Prevalence, Associations, and Outcomes. Winnipeg, MB: Manitoba Centre for Health Policy, October 2011.Google Scholar
  32. 32.
    Kahn SE, Hull RL, Utzschneider KM. Mechanisms linking obesity to insulin resistance and type 2 diabetes. Nature 2006;444(7121):840–46. PMID: 17167471.CrossRefGoogle Scholar
  33. 33.
    Baumgartner RN, Stauber PM, McHugh D, Koehler KM, Garry PJ. Cross-sectional age differences in body composition in persons 60+ years of age. J Gerontol A Biol Sci Med Sci 1995;50(6):M307–16. PMID: 7583802.CrossRefGoogle Scholar
  34. 34.
    Buffa R, Floris GU, Putzu PF, Marini E. Body composition variations in ageing. Coll Antropol 2011;35(1):259–65. PMID: 21667542.PubMedGoogle Scholar
  35. 35.
    Sorkin JD, Müller DC, Andres R. Longitudinal change in height of men and women: Implications for interpretation of the body mass index: The Baltimore Longitudinal Study of Aging. Am J Epidemiol 1999;150(9):969–77. PMID: 10547143.CrossRefGoogle Scholar
  36. 36.
    Matsushita Y, Takahashi Y, Mizoue T, Inoue M, Noda M, Tsugane S, et al. Overweight and obesity trends among Japanese adults: A 10-year follow-up of the JPHC Study. Int J Obes (Land) 2008;32(12):1861–67. PMID: 18957932. doi: 10.1038/ijo.2008.188.CrossRefGoogle Scholar
  37. 37.
    Jiang T, Gilthorpe MS, Shiely F, Harrington JM, Perry IJ, Kelleher CC, et al. Age-period-cohort analysis for trends in body mass index in Ireland. BMC Public Health 2013;13:889. doi: 10.1186/1471-2458-13-889. doi: 10.1186/1471-2458-13-889.CrossRefGoogle Scholar
  38. 38.
    Allman-Farinelli MA, Chey T, Bauman AE, Gill T, James WP. Age, period and birth cohort effects on prevalence of overweight and obesity in Australian adults from 1990 to 2000. Eur J Clin Nutr 2008;62(7):898–907. PMID: 17440514.CrossRefGoogle Scholar

Copyright information

© The Canadian Public Health Association 2015

Authors and Affiliations

  • Dessalegn Y. Melesse
    • 1
    Email author
  • Shiva S. Halli
    • 1
  • Robert B. Tate
    • 1
  1. 1.Department of Community Health Sciences, College of Medicine, Faculty of Health SciencesUniversity of ManitobaWinnipegCanada

Personalised recommendations