European Journal of Dermatology

, Volume 27, Issue 4, pp 343–352 | Cite as

MicroRNA in skin diseases

  • Tatiana G. Ruksha
  • Anna V. Komina
  • Nadezhda V. Palkina
Review

Abstract

MicroRNAs are essential regulators of various cellular processes such as cell growth, differentiation, apoptosis, and the immune response, acting as factors for translational repression and/or degradation of target messenger RNA. Currently, microRNAs are considered as promising biomarkers and therapeutic targets for different pathological conditions. Skin may serve as a convenient model for microRNAmodulation studies due to the comparatively easy access to targets cells. Cutaneous diseases are characterized by multiple intercellular communication pathways, triggered by diverse stimuli and mediated by heterogenous regulators, including microRNAs. The goal of this article is to summarize the state of research in dermatology concerning the action of microRNAs as epigenetic modulators.

Key words

atopic dermatitis lichen planus microRNA psoriasis skin disease vitiligo 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Iorio MV, Croce CM. MicroRNA dysregulation in cancer: diagnostics, monitoring and therapeutics. A comprehensive review. EMBO Mol Med 2012; 4: 143–59.PubMedPubMedCentralCrossRefGoogle Scholar
  2. 2.
    Lauressergues D, Couzigou JM, Clemente HS, et al. Primary transcripts of microRNAs encode regulatory peptides. Nature 2015; 520: 90–3.PubMedCrossRefGoogle Scholar
  3. 3.
    Cheng CJ, Bahal R, Babar IA, et al. MicroRNA silencing for cancer therapy targeted to the tumour microenvironment. Nature 2015; 518: 107–10.PubMedCrossRefGoogle Scholar
  4. 4.
    Wang H, Syrovets T, Kess D, et al. Targeting NF-kappa B with a natural triterpenoid alleviates skin inflammation in a mouse model of psoriasis. J Immunol 2009; 183: 4755–63.PubMedCrossRefGoogle Scholar
  5. 5.
    Xu N, Meisgen F, Butler LM, et al. MicroRNA-31 is overexpressed in psoriasis and modulates inflammatory cytokine and chemokine production in keratinocytes via targeting serine/threonine kinase 40. J Immunol 2013; 190: 678–88.PubMedCrossRefGoogle Scholar
  6. 6.
    Yan S, Xu Z, Lou F, et al. NF-κB-induced microRNA-31 promotes epidermal hyperplasia by repressing protein phosphatase 6 in psoriasis. Nat Commun 2015; 6: 7652.PubMedPubMedCentralCrossRefGoogle Scholar
  7. 7.
    Joyce CE, Zhou X, Xia J, et al. Deep sequencing of small RNAs from human skin reveals major alterations in the psoriasis miRNAome. Hum Mol Genet 2011; 20: 4025–40.PubMedPubMedCentralCrossRefGoogle Scholar
  8. 8.
    Peng H, Kaplan N, Hamanaka RB, et al. MicroRNA-31/factorinhibiting hypoxia-inducible factor 1 nexus regulates keratinocyte differentiation. Proc Natl Acad Sci U S A 2012; 109: 14030–4.PubMedPubMedCentralCrossRefGoogle Scholar
  9. 9.
    Xia J, Zhang W. MicroRNAs in normal and psoriatic skin. Physiol Genomics 2014; 46: 113–22.PubMedCrossRefGoogle Scholar
  10. 10.
    Zhang Z, Li Z, Gao C, et al. miR-21 plays a pivotal role in gastric cancer pathogenesis and progression. Lab Invest 2008; 88: 1358–66.PubMedCrossRefGoogle Scholar
  11. 11.
    Han M, Liu M, Wang Y, et al. Re-expression of miR-21 contributes to migration and invasion by inducing epithelial-mesenchymal transition consistent with cancer stem cell characteristics in MCF-7 cells. Mol Cell Biochem 2012; 363: 427–36.PubMedCrossRefGoogle Scholar
  12. 12.
    Meisgen F, Xu N, Wei T, et al. MiR-21 is up-regulated in psoriasis and suppresses T cell apoptosis. Exp Dermatol 2012; 4: 312–4.CrossRefGoogle Scholar
  13. 13.
    Gu X, Nylander E, Coates PJ, Nylander K. Effect of narrowband ultraviolet B phototherapy on p63 and microRNA (miR-21 and miR-125b) expression in psoriatic epidermis. Acta Derm Venereol 2011; 91: 392–7.PubMedCrossRefGoogle Scholar
  14. 14.
    Hou L, Bowman L, Meighan TG, Pratheeshkumar P, Shi X, Ding M. Induction of miR-21-PDCD4 signaling by UVB in JB6 cells involves ROS-mediated MAPK pathways. Exp Toxicol Pathol 2013; 65: 1145–8.PubMedCrossRefGoogle Scholar
  15. 15.
    Killeen ME, Ferris L, Kupetsky EA, Falo LJr EA, Mathers AR. Signaling through purinergic receptors for ATP induces human cutaneous innate and adaptive Th17 responses: implications in the pathogenesis of psoriasis. J Immunol 2013; 190: 4324–36.PubMedPubMedCentralCrossRefGoogle Scholar
  16. 16.
    Xu N, Brodin P, Wei T, et al. MiR-125b, a microRNA downregulated in psoriasis, modulates keratinocyte proliferation by targeting FGFR2. J Invest Dermatol 2011; 131: 1521–9.PubMedCrossRefGoogle Scholar
  17. 17.
    Kim SW, Ramasamy K, Bouamar H, et al. MicroRNAs miR-125a and miR-125b constitutively activate the NF-κB pathway by targeting the tumor necrosis factor alpha-induced protein 3 (TNFAIP3, A20). Proc Natl Acad Sci U S A 2012; 109: 7865–70.PubMedPubMedCentralCrossRefGoogle Scholar
  18. 18.
    Kim JK, Jang SW, Suk K, Lee WH. Fascin regulates TLR4/PKCmediated translational activation through miR-155 and miR-125b, which targets the 3’ untranslated region of TNF-α mRNA. Immunol Invest 2015; 44: 309–20.PubMedCrossRefGoogle Scholar
  19. 19.
    Fu D, Yu W, Li M, et al. MicroRNA-138 regulates the balance of Th1/Th2 via targeting RUNX3 in psoriasis. Immunol Lett 2015; 166: 55–62.PubMedCrossRefGoogle Scholar
  20. 20.
    Zhao M, Wang LT, Liang GP, et al. Up-regulation of microRNA-210 induces immune dysfunction via targeting FOXP3 in CD4(+) T cells of psoriasis vulgaris. Clin Immunol 2014; 150: 22–30.PubMedCrossRefGoogle Scholar
  21. 21.
    Løvendorf MB, Mitsui H, Zibert JR, et al. Laser capture microdissection followed by next-generation sequencing identifies disease-related microRNAs in psoriatic skin that reflect systemic microRNA changes in psoriasis. Exp Dermatol 2015; 24: 187–93.PubMedCrossRefGoogle Scholar
  22. 22.
    Løvendorf MB, Zibert JR, Gyldenløve M, Røpke MA, Skov L. MicroRNA-223 and miR-143 are important systemic biomarkers for disease activity in psoriasis. J Dermatol Sci 2014; 75: 133–9.PubMedCrossRefGoogle Scholar
  23. 23.
    Raaby L, Langkilde A, Kjellerup RB, et al. Changes in mRNA expression precede changes in microRNA expression in lesional psoriatic skin during treatment with adalimumab. Br J Dermatol 2015; 173: 436–47.PubMedCrossRefGoogle Scholar
  24. 24.
    Pivarcsi A, Meisgen F, Xu N, Ståhle M, Sonkoly E. Changes in the level of serum microRNAs in patients with psoriasis after antitumour necrosis factor-α therapy. Br J Dermatol 2013; 169: 563–70.PubMedCrossRefGoogle Scholar
  25. 25.
    Yao R, Ma Y, Du Y, et al. The altered expression of inflammationrelated microRNAs with microRNA-155 expression correlates with Th17 differentiation in patients with acute coronary syndrome. Cell Mol Immunol 2011; 8: 486–95.PubMedPubMedCentralCrossRefGoogle Scholar
  26. 26.
    Pathak S, Grillo AR, Scarpa M, et al. MiR-155 modulates the inflammatory phenotype of intestinal myofibroblasts by targeting SOCS1 in ulcerative colitis. Exp Mol Med 2015; 47: e164.CrossRefGoogle Scholar
  27. 27.
    Gracias DT, Stelekati E, Hope JL, et al. The microRNA miR-155 controls CD8(+) T cell responses by regulating interferon signaling. Nat Immunol 2013; 14: 593–602.PubMedPubMedCentralCrossRefGoogle Scholar
  28. 28.
    Sonkoly E, Janson P, Majuri ML, et al. MiR-155 is overexpressed in patients with atopic dermatitis and modulates T-cell proliferative responses by targeting cytotoxic T lymphocyte-associated antigen 4. J Allergy Clin Immunol 2010; 126: 581–9.e1-20.PubMedCrossRefGoogle Scholar
  29. 29.
    Ciszak L, Frydecka I, Wolowiec D, Szteblich A, Kosmaczewska A. Patients with chronic lymphocytic leukaemia (CLL) differ in the pattern of CTLA-4 expression on CLL cells: the possible implications for immunotherapy with CTLA-4 blocking antibody. Tumour Biol 2016; 37: 4143–57.PubMedCrossRefGoogle Scholar
  30. 30.
    Sääf A, Kockum I, Wahlgren CF, et al. Are BIC (miR-155) polymorphisms associated with eczema susceptibility? Acta Derm Venereol 2013; 93: 366–7.PubMedCrossRefGoogle Scholar
  31. 31.
    Egan PJ, Lawlor KE, Alexander WS, Wicks IP. Suppressor of cytokine signaling-1 regulates acute inflammatory arthritis and T cell activation. J Clin Invest 2003; 111: 915–24.PubMedPubMedCentralCrossRefGoogle Scholar
  32. 32.
    Rebane A, Runnel T, Aab A, et al. MicroRNA-146a alleviates chronic skin inflammation in atopic dermatitis through suppression of innate immune responses in keratinocytes. J Allergy Clin Immunol 2014; 134: 836–847.e11.PubMedCrossRefGoogle Scholar
  33. 33.
    Lv Y, Qi R, Xu J, et al. Profiling of serum and urinary microRNAs in children with atopic dermatitis. PLoS One 2014; 9: e115448.CrossRefGoogle Scholar
  34. 34.
    Vennegaard MT, Bonefeld CM, Hagedorn PH, et al. Allergic contact dermatitis induces upregulation of identical microRNAs in humans and mice. Contact Dermatitis 2012; 67: 298–305.PubMedCrossRefGoogle Scholar
  35. 35.
    Liu X, Hong Q, Wang Z, Yu Y, Zou X, Xu L. Transforming growth factor-β-sphingosine kinase 1/S1P signaling upregulates microRNA-21 to promote fibrosis in renal tubular epithelial cells. Exp Biol Med (Maywood) 2016; 241: 265–72.CrossRefGoogle Scholar
  36. 36.
    Ying W, Tseng A, Chang RC, et al. MicroRNA-223 is a crucial mediator of PPARγ-regulated alternative macrophage activation. J Clin Invest 2015; 125: 4149–59.PubMedPubMedCentralCrossRefGoogle Scholar
  37. 37.
    Su S, Zhao Q, He C, et al. MiR-142-5p and miR-130a-3p are regulated by IL-4 and IL-13 and control profibrogenic macrophage program. Nat Commun 2015; 6: 8523.PubMedPubMedCentralCrossRefGoogle Scholar
  38. 38.
    Fordham JB, Naqvi AR, Nares S. Regulation of miR-24, miR-30b, and miR-142-3p during macrophage and dendritic cell differentiation potentiates innate immunity. J Leukoc Biol 2015; 98: 195–207.PubMedPubMedCentralCrossRefGoogle Scholar
  39. 39.
    Pigatto PD. Conctact dermatitis: some important topics. Eur Ann Allergy Clin Immunol 2015; 47: 188–91.PubMedGoogle Scholar
  40. 40.
    Gassling V, Hampe J, Açil Y, Braesen JH, Wiltfang J, Häsler R. Disease-associated miRNA-mRNA networks in oral lichen planus. PLoS One 2013; 8: e63015.CrossRefGoogle Scholar
  41. 41.
    Momen-Heravi F, Trachtenberg AJ, Kuo WP, Cheng YS. Genomewide study of salivary microRNAs for detection of oral cancer. J Dent Res 2014; 93: 86S–93S.PubMedPubMedCentralCrossRefGoogle Scholar
  42. 42.
    Zhang WY, Liu W, Zhou YM, Shen XM, Wang YF, Tang GY. Altered microRNA expression profile with miR-27b down-regulation correlated with disease activity of oral lichen planus. Oral Dis 2012; 18: 265–70.PubMedCrossRefGoogle Scholar
  43. 43.
    Hu JY, Zhang J, Cui JL, et al. Increasing CCL5/CCR5 on CD4+ T cells in peripheral blood of oral lichen planus. Cytokine 2013; 62: 141–5.PubMedCrossRefGoogle Scholar
  44. 44.
    Byun JS, Hong SH, Choi JK, Jung JK, Lee HJ. Diagnostic profiling of salivary exosomal microRNAs in oral lichen planus patients. Oral Dis 2015; 21: 987–93.PubMedCrossRefGoogle Scholar
  45. 45.
    Chen J, Yao D, Li Y, et al. Serum microRNA expression levels can predict lymph node metastasis in patients with earlystage cervical squamous cell carcinoma. Int J Mol Med 2013; 32: 557–67.PubMedPubMedCentralCrossRefGoogle Scholar
  46. 46.
    Dang J, Bian YQ, Sun JY, et al. MicroRNA-137 promoter methylation in oral lichen planus and oral squamous cell carcinoma. J Oral Pathol Med 2013; 42: 315–21.PubMedCrossRefGoogle Scholar
  47. 47.
    Zuo YL, Gong DP, Li BZ, et al. The TF-miRNA Coregulation Network in Oral Lichen Planus. Biomed Res Int 2015; 2015: 731264.PubMedPubMedCentralCrossRefGoogle Scholar
  48. 48.
    Danielsson K, Ebrahimi M, Wahlin YB, Nylander K, Boldrup L. Increased levels of COX-2 in oral lichen planus supports an autoimmune cause of the disease. J Eur Acad Dermatol Venereol 2012; 26: 1415–9.PubMedCrossRefGoogle Scholar
  49. 49.
    Fukumoto I, Kikkawa N, Matsushita R, et al. Tumor-suppressive microRNAs (miR-26a/b, miR-29a/b/c and miR-218) concertedly suppressed metastasis-promoting LOXL2 in head and neck squamous cell carcinoma. J Hum Genet 2016; 61: 109–18.PubMedCrossRefGoogle Scholar
  50. 50.
    Arão TC, Guimarães AL, de Paula AM, Gomes CC, Gomez RS. Increased miRNA-146a and miRNA-155 expressions in oral lichen planus. Arch Dermatol Res 2012; 304: 371–5.PubMedCrossRefGoogle Scholar
  51. 51.
    Terlou A, Santegoets LA, van der Meijden WI, et al. An autoimmune phenotype in vulvar lichen sclerosus and lichen planus: a Th1 response and high levels of microRNA-155. J Invest Dermatol 2012; 132: 658–66.PubMedCrossRefGoogle Scholar
  52. 52.
    Makino T, Jinnin M, Etoh M, et al. Down-regulation of microRNA-196a in the sera and involved skin of localized scleroderma patients. Eur J Dermatol 2014; 24: 470–6.PubMedGoogle Scholar
  53. 53.
    Sing T, Jinnin M, Yamane K, et al. MicroRNA-92a expression in the sera and dermal fibroblasts increases in patients with scleroderma. Rheumatology (Oxford) 2012; 9: 1550–6.CrossRefGoogle Scholar
  54. 54.
    Etoh M, Jinnin M, Makino K, et al. microRNA-7 down-regulation mediates excessive collagen expression in localized scleroderma. Arch Dermatol Res 2013; 305: 9–15.PubMedCrossRefGoogle Scholar
  55. 55.
    Makino K, Jinnin M, Hirano A, et al. The down-regulation of microRNA let-7a contributes to the excessive expression of type I collagen in systemic and localized scleroderma. J Immunol 2013; 190: 3905–15.PubMedCrossRefGoogle Scholar
  56. 56.
    Salazar GA, Assassi S, Wu M, Hagan J, Mayes MD. A3.34 The global microrna profile of skin in systemic sclerosis. Ann Rheum Dis 2014; 73: A55–6.CrossRefGoogle Scholar
  57. 57.
    Raiko L, Siljamäki E, Mahoney MG, et al. Hailey-Hailey disease and tight junctions: Claudins 1 and 4 are regulated by ATP2C1 gene encoding Ca(2+)/Mn(2+) ATPase SPCA1 in cultured keratinocytes. Exp Dermatol 2012; 21: 586–91.PubMedCrossRefGoogle Scholar
  58. 58.
    Kurinna S, Schäfer M, Ostano P, et al. A novel Nrf2-miR-29-desmocollin-2 axis regulates desmosome function in keratinocytes. Nat Commun 2014; 5: 5099.PubMedCrossRefGoogle Scholar
  59. 59.
    Manca S, Magrelli A, Cialfi S, et al. Oxidative stress activation of miR-125b is part of the molecular switch for Hailey-Hailey disease manifestation. Exp Dermatol 2011; 20: 932–7.PubMedCrossRefGoogle Scholar
  60. 60.
    Lee MJ, Cha HJ, Lim KM, et al. Analysis of the microRNA expression profile of normal human dermal papilla cells treated with 5α-dihydrotestosterone. Mol Med Rep 2015; 12: 1205–12.PubMedCrossRefGoogle Scholar
  61. 61.
    Goodarzi HR, Abbasi A, Saffari M, Fazelzadeh Haghighi M, Tabei MB, Noori Daloii MR. Differential expression analysis of balding and nonbalding dermal papilla microRNAs in male pattern baldness with a microRNA amplification profiling method. Br J Dermatol 2012; 166: 1010–6.PubMedCrossRefGoogle Scholar
  62. 62.
    Zhang L, Stokes N, Polak L, Fuchs E. Specific microRNAs are preferentially expressed by skin stem cells to balance self-renewal and early lineage commitment. Cell Stem Cell 2011; 8: 294–308.PubMedPubMedCentralCrossRefGoogle Scholar
  63. 63.
    Chistiakov DA, Sobenin IA, Orekhov AN, Bobryshev YV. Human miR-221/222 in physiological and atherosclerotic vascular remodeling. Biomed Res Int 2015; 2015: 354517.PubMedPubMedCentralCrossRefGoogle Scholar
  64. 64.
    Chen N, Wang J, Hu Y, et al. MicroRNA-410 reduces the expression of vascular endothelial growth factor and inhibits oxygen-induced retinal neovascularization. PLoS One 2014; 9: e95665.CrossRefGoogle Scholar
  65. 65.
    Masliah-Planchon J, Pasmant E, Luscan A, et al. MicroRNAome profiling in benign and malignant neurofibromatosis type 1-associated nerve sheath tumors: evidences of PTEN pathway alterations in early NF1 tumorigenesis. BMC Genomics 2013; 14: 473.PubMedPubMedCentralCrossRefGoogle Scholar
  66. 66.
    Weng Y, Chen Y, Chen J, Liu Y, Bao T. Identification of serum microRNAs in genome-wide serum microRNA expression profiles as novel noninvasive biomarkers for malignant peripheral nerve sheath tumor diagnosis. Med Oncol 2013; 30: 531.PubMedCrossRefGoogle Scholar
  67. 67.
    Shi YL, Weiland M, Lim HW, Mi QS, Zhou L. Serum miRNA expression profiles change in autoimmune vitiligo in mice. Exp Dermatol 2014; 23: 140–2.PubMedCrossRefGoogle Scholar
  68. 68.
    Shi Q, Zhang W, Guo S, et al. Oxidative stress-induced overexpression of miR-25: the mechanism underlying the degeneration of melanocytes in vitiligo. Cell Death Differ 2016; 23: 496–508.PubMedCrossRefGoogle Scholar
  69. 69.
    Lee AY, Kim NH, Choi WI, Youm YH. Less keratinocyte-derived factors related to more keratinocyte apoptosis in depigmented than normally pigmented suction-blistered epidermis may cause passive melanocyte death in vitiligo. J Invest Dermatol 2005; 124: 976–83.PubMedCrossRefGoogle Scholar
  70. 70.
    Wang Y, Wang K, Liang J, et al. Differential expression analysis of miRNA in peripheral blood mononuclear cells of patients with nonsegmental vitiligo. J Dermatol 2015; 42: 193–7.PubMedCrossRefGoogle Scholar
  71. 71.
    Cui TT, Yi XL, Zhang WG, et al. MiR-196a-2 rs11614913 polymorphism is associated with vitiligo by affecting heterodimeric molecular complexes of Tyr and Tyrp1. Arch Dermatol Res 2015; 307: 683–92.PubMedCrossRefGoogle Scholar
  72. 72.
    Huang Y, Yi X, Jian Z, et al. A single-nucleotide polymorphism of miR-196a-2 and vitiligo: an association study and functional analysis in a Han Chinese population. Pigment Cell Melanoma Res 2013; 26: 338–47.PubMedCrossRefGoogle Scholar
  73. 73.
    Cimmino A, Calin GA, Fabbri M, et al. MiR-15 and miR-16 induce apoptosis by targeting BCL2. Proc Natl Acad Sci U S A 2005; 102: 13944–9.PubMedPubMedCentralCrossRefGoogle Scholar
  74. 74.
    Ralfkiaer U, Hagedorn PH, Bangsgaard N, et al. Diagnostic microRNA profiling in cutaneous T-cell lymphoma (CTCL). Blood 2011; 118: 5891–900.PubMedPubMedCentralCrossRefGoogle Scholar
  75. 75.
    Ralfkiaer U, Lindahl LM, Litman T, et al. MicroRNA expression in early mycosis fungoides is distinctly different from atopic dermatitis and advanced cutaneous T-cell lymphoma. Anticancer Res 2014; 34: 7207–17.PubMedGoogle Scholar
  76. 76.
    Benner MF, Ballabio E, van Kester MS, et al. Primary cutaneous anaplastic large cell lymphoma shows a distinct miRNA expression profile and reveals differences from tumor-stage mycosis fungoides. Exp Dermatol 2012; 21: 632–4.PubMedCrossRefGoogle Scholar
  77. 77.
    Sandoval J, Díaz-Lagares A, Salgado R, et al. MicroRNA expression profiling and DNA methylation signature for deregulated microRNA in cutaneous T-cell lymphoma. J Invest Dermatol 2015; 135: 1128–37.PubMedCrossRefGoogle Scholar
  78. 78.
    McGirt LY, Adams CM, Baerenwald DA, Zwerner JP, Zic JA, Eischen CM. MiR-223 regulates cell growth and targets protooncogenes in mycosis fungoides/cutaneous T-cell lymphoma. J Invest Dermatol 2014; 134: 1101–7.PubMedCrossRefGoogle Scholar
  79. 79.
    Ballabio E, Mitchell T, van Kester MS, et al. MicroRNA expression in Sezary syndrome: identification, function, and diagnostic potential. Blood 2010; 116: 1105–13.PubMedPubMedCentralCrossRefGoogle Scholar
  80. 80.
    Ito M, Teshima K, Ikeda S, et al. MicroRNA-150 inhibits tumor invasion and metastasis by targeting the chemokine receptor CCR6, in advanced cutaneous T-cell lymphoma. Blood 2014; 123: 1499–511.PubMedCrossRefGoogle Scholar
  81. 81.
    Xu N, Zhang L, Meisgen F, et al. MicroRNA-125b down-regulates matrix metallopeptidase 13 and inhibits cutaneous squamous cell carcinoma cell proliferation, migration, and invasion. J Biol Chem 2012; 287: 29899–908.PubMedPubMedCentralCrossRefGoogle Scholar
  82. 82.
    Osada H, Takahashi T. let-7 and miR-17-92: small-sized major players in lung cancer development. Cancer Sci 2011; 102: 9–17.PubMedCrossRefGoogle Scholar
  83. 83.
    Gastaldi C, Bertero T, Xu N, et al. MiR-193b/365a cluster controls progression of epidermal squamous cell carcinoma. Carcinogenesis 2014; 35: 1110–20.PubMedCrossRefGoogle Scholar
  84. 84.
    Heffelfinger C, Ouyang Z, Engberg A, et al. Correlation of global microRNA expression with basal cell carcinoma subtype. G3 (Bethesda) 2012; 2: 279–86.CrossRefGoogle Scholar
  85. 85.
    Bellare P, Ganem D. Regulation of KSHV lytic switch protein expression by a virus-encoded microRNA: an evolutionary adaptation that fine-tunes lytic reactivation. Cell Host Microbe 2009; 6: 570–5.PubMedPubMedCentralCrossRefGoogle Scholar
  86. 86.
    Lu F, Stedman W, Yousef M, Renne R, Lieberman PM. Epigenetic regulation of Kaposi’s sarcoma-associated herpesvirus latency by virus-encoded microRNAs that target Rta and the cellular Rbl2-DNMT pathway. J Virol 2010; 84: 2697–706.PubMedPubMedCentralCrossRefGoogle Scholar
  87. 87.
    Lei X, Bai Z, Ye F, et al. Regulation of NF-kappaB inhibitor IkappaBalpha and viral replication by a KSHV microRNA. Nat Cell Biol 2010; 12: 193–9.PubMedPubMedCentralCrossRefGoogle Scholar
  88. 88.
    Ning MS, Kim AS, Prasad N, Levy SE, Zhang H, Andl T. Characterization of the Merkel cell carcinoma miRNome. J Skin Cancer 2014; 2014: 289548.PubMedPubMedCentralCrossRefGoogle Scholar
  89. 89.
    Veija T, Sahi H, Koljonen V, Bohling T, Knuutila S, Mosakhani N. miRNA-34a underexpressed in Merkel cell polyomavirus-negative Merkel cell carcinoma. Virchows Arch 2015; 466: 289–95.PubMedCrossRefGoogle Scholar
  90. 90.
    Xie H, Lee L, Caramuta S, et al. MicroRNA expression patterns related to Merkel cell polyomavirus infection in human Merkel cell carcinoma. J Invest Dermatol 2014; 134: 507–17.PubMedCrossRefGoogle Scholar
  91. 91.
    Zhang L, Huang J, Yang N, et al. MicroRNAs exhibit high frequency genomic alterations in human cancer. Proc Natl Acad Sci U S A 2006; 103: 9136–41.PubMedPubMedCentralCrossRefGoogle Scholar
  92. 92.
    Philippidou D, Schmitt M, Moser D, et al. Signatures of microRNAs and selected microRNA target genes in human melanoma. Cancer Res 2010; 70: 4163–73.PubMedCrossRefGoogle Scholar
  93. 93.
    Leidinger P, Keller A, Borries A, et al. High-throughput miRNA profiling of human melanoma blood samples. BMC Cancer 2010; 10: 262.PubMedPubMedCentralCrossRefGoogle Scholar
  94. 94.
    Chan E, Patel R, Nallur S, et al. MicroRNA signatures differentiate melanoma subtypes. Cell Cycle 2011; 10: 1845–52.PubMedPubMedCentralCrossRefGoogle Scholar
  95. 95.
    Sand M, Skrygan M, Sand D, et al. Comparative microarray analysis of microRNA expression profiles in primary cutaneous malignant melanoma, cutaneous malignant melanoma metastases, and benign melanocytic nevi. Cell Tissue Res 2013; 351: 85–98.PubMedCrossRefGoogle Scholar
  96. 96.
    Caramuta S, Egyházi S, Rodolfo M, et al. MicroRNA expression profiles associated with mutational status and survival in malignant melanoma. J Invest Dermatol 2010; 130: 2062–70.PubMedCrossRefGoogle Scholar
  97. 97.
    Saldanha G, Potter L, Shendge P, et al. Plasma microRNA-21 is associated with tumor burden in cutaneous melanoma. J Invest Dermatol 2013; 133: 1381–4.PubMedCrossRefGoogle Scholar
  98. 98.
    Villaruz LC, Huang G, Romkes M, et al. MicroRNA expression profiling predicts clinical outcome of carboplatin/paclitaxel-based therapy in metastatic melanoma treated on the ECOG-ACRIN trial E2603. Clin Epigenetics 2015; 7: 58.PubMedPubMedCentralCrossRefGoogle Scholar
  99. 99.
    Tembe V, Schramm SJ, Stark MS, et al. MicroRNA and mRNA expression profiling in metastatic melanoma reveal associations with BRAF mutation and patient prognosis. Pigment Cell Melanoma Res 2015; 28: 254–66.PubMedCrossRefGoogle Scholar
  100. 100.
    Margue C, Reinsbach S, Philippidou D, et al. Comparison of a healthy miRNome with melanoma patient miRNomes: are microRNAs suitable serum biomarkers for cancer? Oncotarget 2015; 6: 12110–27.PubMedPubMedCentralCrossRefGoogle Scholar
  101. 101.
    Cohen R, Greenberg E, Nemlich Y, Schachter J, Markel G. MiR-17 regulates melanoma cell motility by inhibiting the translation of ETV1. Oncotarget 2015; 6: 19006–16.PubMedPubMedCentralGoogle Scholar
  102. 102.
    Dar AA, Majid S, Rittsteuer C, et al. The role of miR-18b in MDM2-p53 pathway signaling and melanoma progression. J Natl Cancer Inst 2013; 105: 433–42.PubMedPubMedCentralCrossRefGoogle Scholar
  103. 103.
    van Kempen LC, van den Hurk K, Lazar V, et al. Loss of microRNA-200a and c, and microRNA-203 expression at the invasive front of primary cutaneous melanoma is associated with increased thickness and disease progression. Virchows Arch 2012; 461: 441–8.PubMedCrossRefGoogle Scholar
  104. 104.
    Nguyen T, Kuo C, Nicholl MB, et al. Down-regulation of microRNA-29c is associated with hypermethylation of tumor-related genes and disease outcome in cutaneous melanoma. Epigenetics 2011; 6: 388–94.PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© John Libbey Eurotext 2017

Authors and Affiliations

  • Tatiana G. Ruksha
    • 1
  • Anna V. Komina
    • 1
  • Nadezhda V. Palkina
    • 1
  1. 1.Department of PathophysiologyKrasnoyarsk State Medical UniversityKrasnoyarskRussian Federation

Personalised recommendations