European Journal of Dermatology

, Volume 25, Issue 3, pp 223–227 | Cite as

Congenital generalized hypertrichosis terminalis: a proposed classification and a plea to avoid the ambiguous term “Ambras syndrome”



Congenital generalized hypertrichosis terminalis (CGHT) is a heterogenous group of diseases with continuing excessive growth of terminal hair. “Ambras syndrome” was first coined by Baumeister in 1993 to describe a case of nonsyndromic CGHT which was erroneously analogized to the portrait paintings of Petrus Gonzales and his children, exhibited in Ambras Castle near Innsbruck, Austria. This family probably, a syndromic type with abnormal dentition, inherited as an autosomal dominant trait. CGHT associated with gingival hyperplasia is probably a particular entity typified by the historical cases of Julia Pastrana and her son. An X-linked type of CGHT has likewise been categorized as “Ambras syndrome”. Moreover, some reports have mistakenly classified “Ambras syndrome” as an example of hypertrichosis lanuginosa. Potential gene loci identified so far may include 8q22, 17q24.2-q24.3 and Xq24-q27.1. The designation “Ambras syndrome” has thus been applied to various types of congenital hypertrichosis that differ to such degree that the name “Ambras” has no specific meaning, neither in the past nor in the future. Hence, this misleading term should now be jettisoned.


Ambras syndrome congenital hypertrichosis hypertrichosis lanuginosa terminal hair 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Garcia-Cruz D, Figuera LE, Cantu JM. Inherited hypertrichoses. Clin Genet 2002; 61: 321–9.PubMedCrossRefGoogle Scholar
  2. 2.
    Bondeson J, Miles AE. Julia Pastrana, the nondescript: an example of congenital, generalized hypertrichosis terminalis with gingival hyperplasia. Am J Med Genet 1993; 47: 198–212.PubMedCrossRefGoogle Scholar
  3. 3.
    Goel N, Rajaram S, Gupta B, Gupta K. Familial congenital generalized hypertrichosis. Indian J Dermatol Venereol Leprol 2013; 79: 849.PubMedGoogle Scholar
  4. 4.
    de Berker DAR, Messenger AG, Sinclair RD. Disorders of hair. In: Burns T, Breathnach S, Cox N, Griffiths C, eds. Rook’s Textbook of Dermatology. 7th edn. Massachusetts: Blackwell, 2004: 63, 91–3.Google Scholar
  5. 5.
    Baumeister FA, Egger J, Schildhauer MT, Stengel-Rutkowski S. Ambras syndrome: delineation of a unique hypertrichosis universalis congenita and association with a balanced pericentric inversion (8) (p11.2; q22). Clin Genet 1993; 44: 121–8.PubMedCrossRefGoogle Scholar
  6. 6.
    Fantauzzo KA, Tadin-Strapps M, You Y, et al. A position effect on TRPS1 is associated with Ambras syndrome in humans and the Koala phenotype in mice. Hum Mol Genet 2008; 17: 3539–51.PubMedCentralPubMedCrossRefGoogle Scholar
  7. 7.
    Tadin M, Braverman E, Cianfarani S, et al. Complex cytogenetic rearrangement of chromosome 8q in a case of Ambras syndrome. Am J Med Genet 2001; 102: 100–4.PubMedCrossRefGoogle Scholar
  8. 8.
    Kim J, Lee G, Choi JR, et al. Ambras syndrome in a Korean patient with balanced pericentric inversion (8)(p11.2q24.2). J Dermatol Sci 2010; 59: 204–6.PubMedCrossRefGoogle Scholar
  9. 9.
    Belengeanu V, Rozsnyai K, Gug C, Bănăţeanu M, Farcaş S, Belengeanu A. Ambras syndrome: report on two affected siblings with no prior family history. Clin Dysmorphol 2004; 13: 265–7.PubMedCrossRefGoogle Scholar
  10. 10.
    Sun M, Li N, Dong W, et al. Copy-number mutations on chromosome 17q24.2-q24.3 in congenital generalized hypertrichosis terminalis with or without gingival hyperplasia. Am J Hum Genet 2009; 84: 807–13.PubMedCentralPubMedCrossRefGoogle Scholar
  11. 11.
    DeStefano GM, Kurban M, Anyane-Yeboa K, et al. Mutations in the cholesterol transporter gene ABCA5 are associated with excessive hair overgrowth. PLoS Genet 2014; 10: e1004333.Google Scholar
  12. 12.
    Ravin JG, Hodge GP. Hypertrichosis portrayes in art. JAMA 1969; 207: 533–4.PubMedCrossRefGoogle Scholar
  13. 13.
    Bondeson J, Miles AE. The hairy family of Burma: a four generation pedigree of congenital hypertrichosis lanuginosa. J R Soc Med 1996; 89: 403–8.PubMedCentralPubMedGoogle Scholar
  14. 14.
    Ray AK. Hypertrichosis terminalis with simian characteristics. J Med Genet 1966; 3: 156.PubMedCentralPubMedCrossRefGoogle Scholar
  15. 15.
    Winter GB, Simpkiss MJ. Hypertrichosis with hereditary gingival hyperplasia. Arch Dis Child 1974; 49: 394–9.PubMedCentralPubMedCrossRefGoogle Scholar
  16. 16.
    Guevara-Sanginés E, Villalobos A, Vega-Memije ME, Mosqueda-Taylor A, Canún-Serrano S, Lacy-Niebla RM. Congenital generalized terminal hypertrichosis with gingival hyperplasia. Pediatr Dermatol 2002; 19: 114–8.PubMedCrossRefGoogle Scholar
  17. 17.
    Canún S, Guevara-Sanginés EG, Elvira-Morales A, Sierra-Romero Mdel C, Rodríguez-Asbun H. Hypertrichosis terminalis, gingival hyperplasia, and a characteristic face: a new distinct entity. Am J Med Genet A 2003; 116: 278–83.CrossRefGoogle Scholar
  18. 18.
    Macías-Flores MA, García-Cruz D, Rivera H, et al. A new form of hypertrichosis inherited as an X-linked dominant trait. Hum Genet 1984; 66: 66–70.PubMedCrossRefGoogle Scholar
  19. 19.
    Figuera LE, Cantu JM. Ambras syndrome and congenital generalized hypertrichosis. Clin Genet 1994; 46: 384.PubMedCrossRefGoogle Scholar
  20. 20.
    Figuera LE, Pandolfo M, Dunne PW, Cantú JM, Patel PI. Mapping of the congenital generalized hypertrichosis locus to chromosome Xq24-q27.1. Nat Genet 1995; 10: 202–7.PubMedCrossRefGoogle Scholar
  21. 21.
    Tadin-Strapps M, Salas-Alanis JC, Moreno L, Warburton D, Martinez-Mir A, Christiano AM. Congenital universal hypertrichosis with deafness and dental anomalies inherited as an X-linked trait. Clin Genet 2003; 63: 418–22.PubMedCrossRefGoogle Scholar
  22. 22.
    DeStefano GM, Fantauzzo KA, Petukhova L, et al. Position effect on FGF13 associated with X-linked congenital generalized hypertrichosis. Proc Natl Acad Sci USA 2013; 110: 7790–5.PubMedCentralPubMedCrossRefGoogle Scholar
  23. 23.
    Zhu H, Shang D, Sun M, et al. X-linked congenital hypertrichosis syndrome is associated with interchromosomal insertions mediated by a human-specific palindrome near SOX3. Am J Hum Genet 2011; 88: 819–26.PubMedCentralPubMedCrossRefGoogle Scholar
  24. 24. Scholar
  25. 25.
    van Bon BW, Gilissen C, Grange DK, et al. Cantú syndrome is caused by mutations in ABCC9. Am J Hum Genet 2012; 90: 1094–101.PubMedCentralPubMedCrossRefGoogle Scholar
  26. 26.
    Boyle MI, Jespersgaard C, Brøndum-Nielsen K, Bisgaard AM, Tümer Z. Cornelia de Lange syndrome. Clin Genet 2015; 88: 1–12.PubMedCrossRefGoogle Scholar
  27. 27.
    Roche N, Houtmeyers P, Janssens S, Blondeel P. Barber-Say syndrome in a father and daughter. Am J Med Genet A 2010; 152A: 2563–8.Google Scholar
  28. 28.
    Chacon-Camacho OF, Vázquez J, Zenteno JC. Expanding the phenotype of gingival fibromatosis-mental retardationhypertrichosis (Zimmermann-Laband) syndrome. Am J Med Genet A 2011; 155A: 1716–20.Google Scholar
  29. 29.
    Lehman AM, McFadden D, Pugash D, Sangha K, Gibson WT, Patel MS. Schinzel-Giedion syndrome: report of splenopancreatic fusion and proposed diagnostic criteria. Am J Med Genet A 2008; 146A: 1299–306.Google Scholar
  30. 30.
    Huang-Doran I, Savage DB. Congenital syndromes of severe insulin resistance. Pediatr Endocrinol Rev 2011; 8: 190–9.PubMedGoogle Scholar

Copyright information

© John Libbey Eurotext 2015

Authors and Affiliations

  1. 1.Department of Dermatology and AllergyTechnische Universität MünchenMunichGermany
  2. 2.Department of DermatologyFreiburg University Medical CenterFreiburgGermany

Personalised recommendations