Advertisement

European Journal of Dermatology

, Volume 25, Issue 1, pp 29–35 | Cite as

[123I]ICF01012 melanoma imaging and [131I]ICF01012 dosimetry allow adapted internal targeted radiotherapy in preclinical melanoma models

  • Claire Viallard
  • Yann Perrot
  • Zied Boudhraa
  • Elodie Jouberton
  • Elisabeth Miot-Noirault
  • Mathilde Bonnet
  • Sophie Besse
  • Florence Mishellany
  • Anne Cayre
  • Lydia Maigne
  • Latifa Rbah-Vidal
  • Michel d’Incan
  • Florent Cachin
  • Jean-Michel Chezal
  • Françoise Degoul
Investigative Report
  • 29 Downloads

Abstract

Background

Melanin-targeting radiotracers are interesting tools for imaging and treatment of pigmented melanoma metastases. However, variation of the pigment concentration may alter the efficiency of such targeting.

Objectives

A clear assessment of both tumor melanin status and dosimetry are therefore prerequisites for internal radiotherapy of disseminated melanoma.

Materials & Methods

The melanin tracer ICF01012 was labelled with iodine-123 for melanoma imaging in pigmented murine B16F0 and human SK-Mel 3 melanomas.

Results

In vivo imaging showed that the uptake of [123I]ICF01012 to melanomas correlated significantly with melanin content. Schedule treatment of 3 × 25 MBq [131I]ICF01012 significantly reduced SK-Mel 3 tumor growth and significantly increased the median survival in treated mice. For this protocol, the calculated delivered dose was 53.2 Gy.

Conclusion

Radio-iodinated ICF01012 is a good candidate for both imaging and therapeutic purposes for patients with metastatic pigmented melanomas.

Key words

dosimetry imaging melanin melanoma radiotracer targeted radionuclide therapy 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Dubey S, Roulin A. Evolutionary and biomedical consequences of internal melanins. Pigment Cell Melanoma Res 2014; 27: 327–38.CrossRefPubMedGoogle Scholar
  2. 2.
    Raposo G, Marks MS. Melanosomes–dark organelles enlighten endosomal membrane transport. Nat Rev Mol Cell Biol 2007; 8: 786–97.CrossRefPubMedCentralPubMedGoogle Scholar
  3. 3.
    Larsson BS. Interaction between chemicals and melanin. Pigment Cell Res 1993; 6: 127–33.CrossRefPubMedGoogle Scholar
  4. 4.
    Mars U, Larsson BS. Pheomelanin as a binding site for drugs and chemicals. Pigment Cell Res 1999; 12: 266–74.CrossRefPubMedGoogle Scholar
  5. 5.
    Pham TQ, Greguric I, Liu X, Berghofer P, Ballantyne P, Chapman J, et al. Synthesis and evaluation of novel radioiodinated benzamides for malignant melanoma. J Med Chem 2007; 50: 3561–72.CrossRefPubMedGoogle Scholar
  6. 6.
    Edreira MM, Pozzi OR. Iodide benzamides for the in-vivo detection of melanoma and metastases. Melanoma Res 2006; 16: 37–43.CrossRefPubMedGoogle Scholar
  7. 7.
    Mansard S, Papon J, Moreau MF, Miot-Noirault E, Labarre P, Bayle M, et al. Uptake in melanoma cells of N-(2-diethylaminoethyl)-2-iodobenzamide (BZA2), an imaging agent for melanoma staging: relation to pigmentation. Nucl Med Biol 2005; 32: 451–8.CrossRefPubMedGoogle Scholar
  8. 8.
    Sillaire-Houtmann I, Bonafous J, Veyre A, et al. [Phase 2 clinical study of 123I-N-(2-diethylaminoethyl)-2-iodobenzamide in the diagnostic of primary and metastatic ocular melanoma]. J Fr Ophtalmol 2004; 27: 34–9.CrossRefPubMedGoogle Scholar
  9. 9.
    Cachin F, Miot-Noirault E, Gillet B, et al. (123)I-BZA2 as a melanintargeted radiotracer for the identification of melanoma metastases: results and perspectives of a multicenter phase III clinical trial. J Nuclr Med 2014; 55: 15–22.CrossRefGoogle Scholar
  10. 10.
    Bonnet-Duquennoy M, Papon J, Mishellany F, et al. Targeted radionuclide therapy of melanoma: anti-tumoural efficacy studies of a new 131I labelled potential agent. Int J Cancer 2009; 125: 708–16.CrossRefPubMedGoogle Scholar
  11. 11.
    Ren G, Miao Z, Liu H, et al. Melanin-targeted preclinical PET imaging of melanoma metastasis. J Nucl Med 2009; 50: 1692–9.CrossRefPubMedCentralPubMedGoogle Scholar
  12. 12.
    Greguric I, Taylor SR, Denoyer D, et al. Discovery of [18F]N-(2-(diethylamino)ethyl)-6-fluoronicotinamide: a melanoma positron emission tomography imaging radiotracer with high tumor to body contrast ratio and rapid renal clearance. J Med Chem 2009; 52: 5299–302.CrossRefPubMedGoogle Scholar
  13. 13.
    Denoyer D, Greguric I, Roselt P, et al. High-contrast PET of melanoma using (18)F-MEL050, a selective probe for melanin with predominantly renal clearance. JNucl Med 2010; 51: 441–7.CrossRefGoogle Scholar
  14. 14.
    Rbah-Vidal L, Vidal A, Besse S, L et al. Early detection and longitudinal monitoring of experimental primary and disseminated melanoma using [(18)F]ICF01006, a highly promising melanoma PET tracer. Eur J Nucl Med Mol Imaging 2012; 39: 449–61.CrossRefGoogle Scholar
  15. 15.
    Voskoboynik M, Arkenau HT. Combination Therapies for the Treatment of Advanced Melanoma: A Review of Current Evidence. Biochem Res Int 2014; 2014: 307059.CrossRefPubMedCentralPubMedGoogle Scholar
  16. 16.
    Nikkola J, Vihinen P, Vlaykova T, Hahka-Kemppinen M, Kahari VM, Pyrhonen S. High expression levels of collagenase-1 and stromelysin-1 correlate with shorter disease-free survival in human metastatic melanoma. Int J Cancer 2002; 97: 432–8.CrossRefPubMedGoogle Scholar
  17. 17.
    Bonnet M, Mishellany F, Papon J, et al. Anti-melanoma efficacy of internal radionuclide therapy in relation to melanin target distribution. Pigment Cell Melanoma Res 2010; 23: e1–11.CrossRefGoogle Scholar
  18. 18.
    Joyal JL, Barrett JA, Marquis JC, et al. Preclinical evaluation of an 131I-labeled benzamide for targeted radiotherapy of metastatic melanoma. Cancer Res 2010; 70: 4045–53.CrossRefPubMedCentralPubMedGoogle Scholar
  19. 19.
    Degoul F, Borel M, Jacquemot N, et al. In vivo efficacy of melanoma internal radionuclide therapy with a I-labelled melanin-targeting heteroarylcarboxamide molecule. Int J Cancer 2013; 133: 1042–53.CrossRefPubMedGoogle Scholar
  20. 20.
    Mier W, Kratochwil C, Hassel JC, et al. Radiopharmaceutical therapy of patients with metastasized melanoma with the melanin-binding benzamide 131I-BA52. J Nucl Med 2014; 55: 9–14.CrossRefPubMedGoogle Scholar
  21. 21.
    Chezal JM, Papon J, Labarre P, et al. Evaluation of radiolabeled (hetero)aromatic analogues of N-(2-diethylaminoethyl)-4-iodobenzamide for imaging and targeted radionuclide therapy of melanoma. J Med Chem 2008; 51: 3133–44.CrossRefPubMedGoogle Scholar
  22. 22.
    Miot-Noirault E, Papon J, Gardette M, et al. The use of [(125)I] scintigraphic in vivo imaging in melanoma-bearing mice for a rapid prescreening of vectors to melanoma tissue. Cancer Biother Radiopharm 2009; 24: 629–36.CrossRefPubMedGoogle Scholar
  23. 23.
    Bolch WE, Eckerman KF, Sgouros G, Thomas SR. MIRD pamphlet No. 21: a generalized schema for radiopharmaceutical dosimetry–standardization of nomenclature. J Nucl Med 2009; 50: 477–84.CrossRefPubMedGoogle Scholar
  24. 24.
    Perrot Y, Degoul F, Auzeloux P, et al. Internal dosimetry through GATE simulations of preclinical radiotherapy using a melanin-targeting ligand. Phys Med Biol 2014; 59: 2183–98.CrossRefPubMedGoogle Scholar
  25. 25.
    Denoyer D, Labarre P, Papon J, et al. Development of a highperformance liquid chromatographic method for the determination of a new potent radioiodinated melanoma imaging and therapeutic agent. J Chromatogr B Analyt Technol Biomed Life Sci 2008; 875: 411–8.CrossRefPubMedGoogle Scholar
  26. 26.
    Zygogianni A, Kyrgias G, Kouvaris J, Mystakidou K, Gogas H, Kouloulias V. Melanoma: the radiotherapeutic point of view; review of the current literature. Rev Recent Clin Trials 2011; 6: 127–33.CrossRefPubMedGoogle Scholar
  27. 27.
    Schweitzer AD, Rakesh V, Revskaya E, Datta A, Casadevall A, Dadachova E. Computational model predicts effective delivery of 188-Re-labeled melanin-binding antibody to metastatic melanoma tumors with wide range of melanin concentrations. Melanoma Res 2007; 17: 291–303.CrossRefPubMedGoogle Scholar
  28. 28.
    Navarro-Teulon I, Lozza C, Pelegrin A, Vives E, Pouget JP. General overview of radioimmunotherapy of solid tumors. Immunotherapy 2013; 5: 467–87.CrossRefPubMedGoogle Scholar
  29. 29.
    Ghanem N, Altehoefer C, Hogerle S, et al. Detectability of liver metastases in malignant melanoma: prospective comparison of magnetic resonance imaging and positron emission tomography. Eur J Radiol 2005; 54: 264–70.CrossRefPubMedGoogle Scholar
  30. 30.
    Brozyna AA, Jozwicki W, Carlson JA, Slominski AT. Melanogenesis affects overall and disease-free survival in patients with stage III and IV melanoma. Human Pathol 2013; 44: 2071–4.CrossRefGoogle Scholar
  31. 31.
    Quanz M, Chassoux D, Berthault N, Agrario C, Sun JS, Dutreix M. Hyperactivation of DNA-PK by double-strand break mimicking molecules disorganizes DNA damage response. PloS One 2009; 4: e6298.CrossRefGoogle Scholar
  32. 32.
    Sambade MJ, Peters EC, Thomas NE, Kaufmann WK, Kimple RJ, Shields JM. Melanoma cells show a heterogeneous range of sensitivity to ionizing radiation and are radiosensitized by inhibition of B-RAF with PLX-4032. Radiother Oncol 2011; 98: 394–9.CrossRefPubMedCentralPubMedGoogle Scholar
  33. 33.
    Dadachova E, Nosanchuk JD, Shi L, et al. Dead cells in melanoma tumors provide abundant antigen for targeted delivery of ionizing radiation by a mAb to melanin. Proc Natl Acad Sci U S A 2004; 101: 14865–70.CrossRefPubMedCentralPubMedGoogle Scholar

Copyright information

© John Libbey Eurotext 2015

Authors and Affiliations

  • Claire Viallard
    • 1
  • Yann Perrot
    • 2
  • Zied Boudhraa
    • 1
  • Elodie Jouberton
    • 3
  • Elisabeth Miot-Noirault
    • 1
  • Mathilde Bonnet
    • 4
  • Sophie Besse
    • 1
  • Florence Mishellany
    • 3
  • Anne Cayre
    • 3
  • Lydia Maigne
    • 2
  • Latifa Rbah-Vidal
    • 1
  • Michel d’Incan
    • 1
  • Florent Cachin
    • 3
  • Jean-Michel Chezal
    • 1
  • Françoise Degoul
    • 1
  1. 1.Imagerie Moléculaire et Thérapie VectoriséeClermont Université, Université d’AuvergneClermont-FerrandFrance
  2. 2.CNRS/IN2P3, Laboratoire de Physique CorpusculaireClermont Université, Université Blaise PascalClermont-FerrandFrance
  3. 3.Centre Jean PerrinClermont-FerrandFrance
  4. 4.M2iSH Clermont-FerrandU1071 INSERM Université d’AuvergneClermont-FerrandFrance

Personalised recommendations