Serum levels of nesfatin-1 and irisin in obese children

Abstract

Background: Along with the developing technology in the modern age, physical activity had decreased considerably in children and adolescents alike with a concomittant and rapid increase in the prevalence of childhood obsesity. The purpose of the present study is to measure the levels of serum nesfatin-1 and irisin in obese children. Methods: The present study was carried out with a total of 62 children, including 32 obese children diagnosed between June 2017 and October 2017 and 30 healthy children. Serum nesfatin-1, irisin, SOD,MDA, fasting blood glucose, total cholesterol (TC), triglyceride (TG), HDL-C, LDL-C, aspartate amino transferase (AST), alanine amino transferase (ALT)), blood urea nitrogen (BUN), C-reactive protein (CRP), calcium (Ca), sodium (Na), potassium (P), chromium (Cr), ferritin, and vitamin B12 data were collected for each patient. Results: In our study, mean nesfatin-1 and SOD values of the obesity group were lower than those of the control group (p <0.05, p <0.001), whereas irisin and MDA values were higher than those of the control group (p <0.001). Conclusion: Childhood obesity is still a significant global problem, despite increased social awareness and numerous preventive healthcare interventions. We believe that all the prospective studies to be carried out to evaluate the relationship between obesity-irisin-nesfatin-1 triad, will make positive contributions to treatment of obesity.

This is a preview of subscription content, log in to check access.

References

  1. 1.

    Sbruzzi G, Eibel B, Barbiero SM, et al. Educational interventions in childhood obesity: a systematic review with metaanalysis of randomized clinical trials. Preventive Med 2013; 56(5):254–64.

    Article  Google Scholar 

  2. 2.

    Seidell JC, Halberstadt J. The global burden of obesity and the challenges of prevention. Ann Nutr Metab 2015; 66(Suppl. 2):7–12.

    CAS  PubMed  Article  Google Scholar 

  3. 3.

    Gurnani M, Birken C, Hamilton J. Childhood obesity: causes, consequences and management. Pediatr Clin North Am 2015; 62(4):821–40.

    PubMed  Article  Google Scholar 

  4. 4.

    de Onis M, Onyango A, Borghi E, et al. WHO Multicentre Growth Reference Study Group. Worldwide implementation of the WHO Child Growth Standards. Public Health Nutr 2012; 15:1603–10.

    PubMed  Article  Google Scholar 

  5. 5.

    Bass R, Eneli I. Severe childhood obesity: an under-recognised and growing health problem. Postgrad Med J 2015; 91:639–645.

    PubMed  Article  Google Scholar 

  6. 6.

    Must A, Dallal GE, Dietz WH. Reference data for obesity: 85th and 95th percentiles of body mass index (wt/ht2) and triceps skinfold thickness. Am J Clin Nutr 1991; 53:839–46.

    CAS  PubMed  Article  Google Scholar 

  7. 7.

    Han JC, Lawlor DA, Kimm SY. Childhood obesity-2010: progress and challenges. Lancet 2010; 375(9727):1737–48.

    PubMed  PubMed Central  Article  Google Scholar 

  8. 8.

    Tam CS, Clément K, Baur LA, Tordjman J. Obesity comorbidities obesity and low-grade inflammation: a paediatric perspective. Obes Rev 2010; 11(2):118–26.

    CAS  PubMed  Article  Google Scholar 

  9. 9.

    Takahashi T. Toward molecular neuroeconomics of obesity. Med Hypotheses 2010; 75:393–6.

    CAS  PubMed  Article  Google Scholar 

  10. 10.

    Oh IS, Shimizu H, Satoh T, et al. Identification of nesfatin-1 as a satiety molecule in the hypothalamus. Nature 2006; 443:709–12.

    Article  CAS  Google Scholar 

  11. 11.

    Pan W, Hsuchou H, Kastin AJ. Nesfatin-1 crosses the bloodbrain barrier without saturation. Peptides 2007; 28:2223–8.

    CAS  PubMed  Article  Google Scholar 

  12. 12.

    Stengel A. Nesfatin-1-More than a food intake regulatory peptide. Peptides 2015; 72:175–83.

    CAS  PubMed  Article  Google Scholar 

  13. 13.

    Stengel A, Taché Y. Nesfatin-1 role as possible new potent regulator of food intake. Regul Pept 2010; 163(1–3):18–23.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  14. 14.

    Bayď̌in A, Erenler AK, Atmaca H, Yardan T. Nesfatin-1 as a novel appetite-controlling peptide: will obesity be history? Turk Jem 2015; 19:60–4.

    Google Scholar 

  15. 15.

    Boström P, Wu J, Jedrychowski MP, et al. A PGC1-a dependent myokine that drives browing of white fat and thermogenesis. Nature 2012; 481:463–8.

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  16. 16.

    Inci A, Aypak Ü. Irisin and its metabolic effects: review. Turkiye Klinikleri J Endocrin 2016; 11(1):15–21.

    Article  Google Scholar 

  17. 17.

    Higdon JV, Frei B. Obesity and oxidative stress: a direct link to CVD? Arterioscler Thromb Vasc Biol 2003; 23:365–7.

    CAS  PubMed  Article  Google Scholar 

  18. 18.

    Khan NI, Naz L, Yasmeen G. Obesity: an independent risk factor for systemic oxidative stress. Pak J Pharm Sci 2006; 19:62–5.

    CAS  PubMed  Google Scholar 

  19. 19.

    Ohkawa H, Oshishi N, Yagi K. Assay for lipid peroxides in animal tissues by thiobarbuturic acid reaction. Anal Biochem 1979; 95:351–8.

    CAS  PubMed  Article  Google Scholar 

  20. 20.

    Sun Y, Oberley LW, Li Y. A simple method for clinical asssay of superoxide dismutase. Clin Chem 1988; 34:497–500.

    CAS  PubMed  Article  Google Scholar 

  21. 21.

    Anderson KL. A review of the prevention and medical management of childhood obesity. Child Adolesc Psychiatr Clin N Am 2018; 27(1):63–76.

    PubMed  Article  Google Scholar 

  22. 22.

    Zhu S, St- Onge MP, Heshka S, Heymsfield SB. Lifestyle behaviors associated with lower risk of having the metabolic syndrome. Metabolism 2004; 53(11):1503–11.

    CAS  PubMed  Article  Google Scholar 

  23. 23.

    Pan W, Hsuchou H, Kastin AJ. Nesfatin-1 crosses the blood–brain barrier without saturation. Peptides 2007; 28:2223–8.

    CAS  PubMed  Article  Google Scholar 

  24. 24.

    William F. Colmers less fat with nesfatin-1. Trends Endocrin Metab 2007; 18:131–2.

    Article  CAS  Google Scholar 

  25. 25.

    Li QC, Wang HY, Chen X, et al. Fasting plasma levels of nesfatin-1 in patients with type 1 and type 2 diabetes mellitus and the nutrientrelated fluctuation of nesfatin-1 level in normal humans. Regul Pept 2010; 159(1–3):72–7.

    CAS  PubMed  Article  Google Scholar 

  26. 26.

    C¸elik F, Belviranli M, Okudan N. Circulating levels of leptin, nesfatin-1 and kisspeptin in postmenopausal obese women. Arch Physiol Biochem 2016; 122(4):195–9.

    Article  CAS  Google Scholar 

  27. 27.

    Mirzaei K, Hossein-nezhad A, Keshavarz SA, et al. Association of nesfatin-1 level with body composition, dietary intake and resting metabolic rate in obese and morbid obese subjects. Diabetes Metab Syndr 2015; 9(4):292–8.

    PubMed  Article  Google Scholar 

  28. 28.

    Shimizu H, Oh IS, Okada S, Mori M. Nesfatin-1: an overview and future clinical application. Endocr J 2009; 56:537–43.

    CAS  PubMed  Article  Google Scholar 

  29. 29.

    Shim YS, Kang MJ, Yang S, et al. Irisin is a biomarker for metabolic syndrome in prepubertal children. Endocr J 2017; 65:23–31.

    PubMed  Article  Google Scholar 

  30. 30.

    Perakakis N, Triantafyllou GA, Fernändez-Real JM, et al. Physiology and role of irisin in glucose homeostasis. Nat Rev Endocrinol 2017; 13(6):324–37.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  31. 31.

    Polyzos SA, Anastasilakis AD, Efstathiadou ZA, et al. Irisin in metabolic diseases. Endocrine 2018; 59(2):260–74.

    CAS  PubMed  Article  Google Scholar 

  32. 32.

    Peterson JM, Mart R, Bond CE. Effect of obesity and exercise on the expression of the novel myokines. Myonectin and Fibronectin type III domain containing 5. PeerJ 2014; 2: e605.

    PubMed  Google Scholar 

  33. 33.

    Stengel A, Hofmann T, Goebel-Stengel M, et al. Circulating levels of irisin in patients with anorexia nervosa and different stages of obesity correlation with body mass index. Peptides 2013; 39:125–30.

    CAS  PubMed  Article  Google Scholar 

  34. 34.

    Reinehr T, Elfers C, Lass N, Roth CL. Irisin and its relation to insulin resistance and puberty in obese children: a longitudinal analysis. J Clin Endocrinol Metab 2015; 100(5):2123–30.

    CAS  PubMed  Article  Google Scholar 

  35. 35.

    Bondia-Pons I, Ryan L, Martinez JA. Oxidative stress and inflammation interactions in human obesity. J Physiol Biochem 2012; 68(4):701–11.

    CAS  PubMed  Article  Google Scholar 

  36. 36.

    Serra D, Mera P, Malandrino MI, et al. Mitochondrial fatty acid oxidation in obesity. Antioxid Redox Signal 2013; 19(3):269–84.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  37. 37.

    Le NA. Lipoprotein-associated oxidative stress: a new twist to the postprandial hypothesis. Int J Mol Sci 2015; 16(1):401–19.

    Article  CAS  Google Scholar 

  38. 38.

    Büyükuslu N, Yigitbaş̌i T. Reactive oxygen species and oxidative stress in obesity. J Marmara Univ Inst Health Sci 2015; 5(3):197–203.

    Google Scholar 

  39. 39.

    Ayala A, Munoz MF, Arguelles S. Lipit peroxidation: production, metabolism, and signaling mechanisms of malondialdehydeand 4-hydroxy-2-nonenal. Oxid Med Cell Longev 2014; 360438:1–31.

    Article  CAS  Google Scholar 

  40. 40.

    Davì G, Guagnano MT, Ciabattoni G, et al. Platelet activation in obese women: role of inflammation and oxidant stress. JAMA 2002; 288(16):2008–14.

    PubMed  Article  Google Scholar 

  41. 41.

    Y̌̌ilmaz FM, Y̌̌ilmaz G, Erdeve ŞS, et al. Serum sialic acid, hs-CRP and oxidative stress parameters in obese children. J Pediatr Endocrinol Metab 2007; 20(2):205–10.

    PubMed  Article  Google Scholar 

  42. 42.

    Khaled AM, Sallam M, Taha S, et al. Obesity, sedentary lifestyle and oxidative stress among young adolescent. J Med Sci 2006; 6(6):956–61.

    Article  Google Scholar 

  43. 43.

    Habib SA, Saad EA, Elsharkawy AA, Attia ZR. Proinflammatory adipocytokines, oxidative stress, insulin, Zn and Cu: interrelations with obesity in Egyptian non-diabetic obese children and adolescents. Adv Med Sci 2015; 60(2):179–85.

    PubMed  Article  Google Scholar 

  44. 44.

    Ozata M, Mergen M, Oktenli C, et al. Increased oxidative stress and hypozincemia in male obesity. Clin Biochem 2002; 35(8):627–631.

    CAS  PubMed  Article  Google Scholar 

  45. 45.

    Lima SC, Arrais RF, Almeida MG, Souza ZM, Pedrosa LF. Plasma lipid profile and lipid peroxidation in overweight or obese children and adolescents. J Pediatr 2004; 80(1):23–8.

    Article  Google Scholar 

  46. 46.

    Juonala M, Magnussen CG, Berenson GS, et al. Childhood adiposity, adult adiposity and cardiovascular risk factors. New Engl J Med 2011; 365(20):1876–85.

    CAS  PubMed  Article  Google Scholar 

  47. 47.

    Neuschwander-Tetri BA, Clark JM, Bass NM, et al. Clinical, laboratory and histological associations in adults with nonalcoholic fatty liver disease. Hepatology 2010; 52(3):913–24.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

Download references

Acknowledgements

This work was supported by Coordinator of Scientific Research Projects at Artvin Çoruh University.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Eda Dokumacioglu.

Additional information

Conflict of Interest

The authors declared no conflicts of interest.

About this article

Verify currency and authenticity via CrossMark

Cite this article

Dokumacioglu, E., Iskender, H., Sahin, A. et al. Serum levels of nesfatin-1 and irisin in obese children. Eur Cytokine Netw 31, 39–43 (2020). https://doi.org/10.1684/ecn.2020.0444

Download citation

Key words

  • Irisin
  • nesfatin-1
  • obesity
  • oxidative stress