European Cytokine Network

, Volume 29, Issue 1, pp 1–15 | Cite as

Interleukin-6 and cardiac operations

Review
  • 1 Downloads

Abstract

Interleukin (IL)-6 is a pleiotropic inflammatory cytokine with both pro- and anti-inflammatory capacities, produced by different cells and tissues, such as leukocytes, adipocytes, and endothelium. From the viewpoint of cardiologists, this cytokine is a reliable biomarker of cardiac dysfunction, occurrence of atrial fibrillation, cardiac myxoma with recurrence, remote metastasis or embolization, and atherosclerotic processes. Although IL-6 levels were detected in patients undergoing cardiac operations and reported sporadically, the perioperative kinetics of IL-6 in cardiac surgical patients was insufficiently elaborated. The influencing factors, clinical implications, and causative effects of IL-6 on clinical outcomes and potential treatment choices among cardiac surgical patients remained to be clarified as well. The purpose of this article is to discuss these aspects of IL-6 in patients undergoing a cardiac operation.

Keywords

cardiac surgical procedures inflammation interleukin-6 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Ai AL, Hall D, Bolling SF. Interleukin-6 and hospital length of stay after open-heart surgery. Biol Psychiatry Psychopharmacol 2012; 14: 79–82.Google Scholar
  2. 2.
    Rose-John S, Heinrich PC. Soluble receptors for cytokines and growth factors: generation and biological function. Biochem J 1994; 300: 281–90.PubMedPubMedCentralCrossRefGoogle Scholar
  3. 3.
    Scheller J, Chalaris A, Schmidt-Arras D, Rose-John S. The pro-and anti-inflammatory properties of the cytokine interleukin-6. Biochim Biophys Acta 2011; 1813: 878–88.PubMedCrossRefGoogle Scholar
  4. 4.
    Gu J, Hu J, Zhang HW, et al. Time-dependent changes of plasma inflammatory biomarkers in type A aortic dissection patients with out optimal medical management. J Cardiothorac Surg 2015; 10: 3. doi: 10.1186/s13019-014-0199-0.PubMedPubMedCentralCrossRefGoogle Scholar
  5. 5.
    Wollert KC, Drexler H. The role of interleukin-6 in the failing heart. Heart Fail Rev 2001; 6: 95–103.PubMedCrossRefGoogle Scholar
  6. 6.
    Biffl WL, Moore EE, Moore FA, Barnett Jr. CC. Interleukin-6 suppression of neutrophil apoptosis is neutrophil concentration dependent. J Leukoc Biol 1995; 58: 582–4.PubMedCrossRefGoogle Scholar
  7. 7.
    Yaoita H, Kawaguchi M, Maehara K, Maruyama Y. IS061: interleukin-6 induces apoptosis of cardiomyocytes via inducible nitric oxide synthase action in rat myocaroial reperfusion injury. Jpn Circ J 1997; 61: 34.Google Scholar
  8. 8.
    Hirota H, Chen J, Betz UA, et al. Loss of a gp130 cardiac muscle cell survival pathway is a critical event in the onset of heart failure during biomechanical stress. Cell 1999; 97: 189–98.PubMedCrossRefGoogle Scholar
  9. 9.
    Matsushita K, Iwanaga S, Oda T, et al. Interleukin-6/soluble interleukin-6 receptor complex reduces infarct size via inhibiting myocardial apoptosis. Lab Invest 2005; 85: 1210–23.PubMedCrossRefGoogle Scholar
  10. 10.
    Robertson S. Interleukin 6 and disease (Last Updated: Oct 26, 2015). News Medical http://www.news-medical.net/health/ Interleukin-6-and-Disease.aspx. Accessed Jan 9, 2018.Google Scholar
  11. 11.
    Tsutamoto T, Hisanaga T, Wada A, et al. Interleukin-6 spillover in the peripheral circulation increases with the severity of heart failure, and the high plasma level of interleukin-6 is an important prognostic predictor in patients with congestive heart failure. J Am Coll Cardiol 1998; 31: 391–8.PubMedCrossRefGoogle Scholar
  12. 12.
    Fuchs M, Hilfiker A, Kaminski K, et al. Role of interleukin-6 for LV remodeling and survival after experimental myocardial infarction. FASEB J 2003; 17: 2118–20.PubMedCrossRefGoogle Scholar
  13. 13.
    Lommi J, Pulkki K, Koskinen P, et al. Haemodynamic, neuroendocrine and metabolic correlates of circulating cytokine concentrations in congestive heart failure. Eur Heart J 1997; 18: 1620–5.PubMedCrossRefGoogle Scholar
  14. 14.
    Negreva MN, Georgiev SJ, Penev AP. Cytokine interleukin-6 in patients with paroxysmal atrial fibrillation. Int J Pharm Med Res 2015; 3: 16–20.Google Scholar
  15. 15.
    Mochizuki Y, Okamura Y, Iida H, Mori H, Shimada K. Interleukin-6 and “complex” cardiac myxoma. Ann Thorac Surg 1998; 66: 931–3.PubMedCrossRefGoogle Scholar
  16. 16.
    Ezerioha N, Feng W. Intracardiac myxoma, cerebral aneurysms and elevated interleukin-6. Case Rep Neurol 2015; 7: 152–5. doi: 10.1159/000437256.PubMedPubMedCentralCrossRefGoogle Scholar
  17. 17.
    Heresi GA, Aytekin M, Hammel JP, Wang S, Chatterjee S, Dweik RA. Plasma interleukin-6 adds prognostic information in pulmonary arterial hypertension. Eur Respir J 2014; 43: 912–4.PubMedCrossRefGoogle Scholar
  18. 18.
    Kanda T, Takahashi T. Interleukin-6 and cardiovascular diseases. Jpn Heart J 2004; 45: 183–93.PubMedCrossRefGoogle Scholar
  19. 19.
    Negoro S, Kunisada K, Tone E, et al. Activation of JAK/STAT pathway transduces cytoprotective signal in rat acute myocardial infarction. Cardiovasc Res 2000; 47: 797–805.PubMedCrossRefGoogle Scholar
  20. 20.
    Kobara M, Noda K, Kitamura M, et al. Antibody against interleukin-6 receptor attenuates left ventricular remodelling after myocardial infarction in mice. Cardiovasc Res 2010; 87: 424–30.PubMedCrossRefGoogle Scholar
  21. 21.
    Kobara M, Noda K, Kitamura M, et al. Antibody against interleukin-6 receptor attenuates left ventricular remodelling after myocardial infarction in mice. Cardiovasc Res 2010; 87: 424–30.PubMedCrossRefGoogle Scholar
  22. 22.
    Amdur RL, Mukherjee M, Go A, et al. Interleukin-6 is a risk factor for atrial fibrillation in chronic kidney disease: findings from the CRIC study. PLoS One 2016; 11: e0148189. doi: 10.1371/journal. pone.0148189.CrossRefGoogle Scholar
  23. 23.
    Abe K, Nishimura M, Sakakibara T. Interleukin-6 and tumour necrosis factor during cardiopulmonary bypass. Can J Anaesth 1994; 41: 876–7.PubMedCrossRefGoogle Scholar
  24. 24.
    Casey LC. Role of cytokines in the pathogenesis of cardiopulmonary-induced multisystem organ failure. Ann Thorac Surg 1993; 56: S92–6.PubMedCrossRefGoogle Scholar
  25. 25.
    Hirai S. Systemic inflammatory response syndrome after cardiac surgery under cardiopulmonary bypass. Ann Thorac Cardiovasc Surg 2003; 9: 365–70.PubMedGoogle Scholar
  26. 26.
    Wan S, Marchant A, DeSmet JM, et al. Human cytokine responses to cardiac transplantation and coronary artery bypass grafting. J Thorac Cardiovasc Surg 1996; 111: 469–77.PubMedCrossRefGoogle Scholar
  27. 27.
    Ueki M, Kawasaki T, Habe K, Hamada K, Kawasaki C, Sata T. The effects of dexmedetomidine on inflammatory mediators after cardiopulmonary bypass. Anaesthesia 2014; 69: 693–700.PubMedCrossRefGoogle Scholar
  28. 28.
    Hill GE, Pohorecki R, Whitten CW. Plasma lipid concentrations correlate inversely with CPB-induced interleukin-6 release. Can J Anaesth 1998; 45: 509–14.PubMedCrossRefGoogle Scholar
  29. 29.
    Kawamura T, Inada K, Okada H, Okada K, Wakusawa R. Methylprednisolone inhibits increase of interleukin 8 and 6 during open heart surgery. Can J Anaesth 1995; 42: 399–403.PubMedCrossRefGoogle Scholar
  30. 30.
    Ashraf SS, Tian Y, Zacharrias S, Cowan D, Martin P, Watterson K. Effects of cardiopulmonary bypass on neonatal and paediatric inflammatory profiles. Eur J Cardiothorac Surg 1997; 12: 862–8.PubMedCrossRefGoogle Scholar
  31. 31.
    Wan S, Izzat MB, Lee TW, Wan IY, Tang NL, Yim AP. Avoiding cardiopulmonary bypass in multivessel CABG reduces cytokine response and myocardial injury. Ann Thorac Surg 1999; 68: 52–6 (discussion 56-7).PubMedCrossRefGoogle Scholar
  32. 32.
    Beghetti M, Rimensberger PC, Kalangos A, Habre W, Gervaix A. Kinetics of procalcitonin, interleukin 6 and C-reactive protein after cardiopulmonary-bypass in children. Cardiol Young 2003; 13: 161–7.PubMedCrossRefGoogle Scholar
  33. 33.
    Wan IY, Arifi AA,Wan S, et al. Beating heart revascularization with or without cardiopulmonary bypass: evaluation of inflammatory response in a prospective randomized study. J Thorac Cardiovasc Surg 2004; 127: 1624–31.PubMedCrossRefGoogle Scholar
  34. 34.
    Liebold A, Keyl C, Birnbaum DE. The heart produces but the lungs consume proinflammatory cytokines following cardiopulmonary bypass. Eur J Cardiothorac Surg 1999; 15: 340–5.PubMedCrossRefGoogle Scholar
  35. 35.
    Maruna P, Kunstyr J, Plocova KM, et al. Predictors of infection after pulmonary endarterectomy for chronic thrombo-embolic pulmonary hypertension. Eur J Cardiothorac Surg 2011; 39: 195–200.PubMedCrossRefGoogle Scholar
  36. 36.
    Lequier LL, Nikaidoh H, Leonard SR, et al. Preoperative and postoperative endotoxemia in children with congenital heart disease. Chest 2000; 117: 1706–12.PubMedCrossRefGoogle Scholar
  37. 37.
    Jones KG, Brull DJ, Brown LC, et al. Interleukin-6 (IL-6) and the prognosis of abdominal aortic aneurysms. Circulation 2001; 103: 2260–5.PubMedCrossRefGoogle Scholar
  38. 38.
    Dehoux MS, Hernot S, Asehnoune K, et al. Cardiopulmonary bypass decreases cytokine production in lipopolysaccharidestimulated whole blood cells: roles of interleukin-10 and the extracorporeal circuit. Crit Care Med 2000; 28: 1721–7.PubMedCrossRefGoogle Scholar
  39. 39.
    Hauser GJ, Ben-Ari J, Colvin MP, et al. Interleukin-6 levels in serum and lung lavage fluid of children undergoing open heart surgery correlate with postoperative morbidity. Intensive Care Med 1998; 24: 481–6.PubMedCrossRefGoogle Scholar
  40. 40.
    Santos AR, Heidemann SM,Walters 3rd. HL, Delius RE. Effect of inhaled corticosteroid on pulmonary injury and inflammatory mediator production after cardiopulmonary bypass in children. Pediatr Crit Care Med 2007; 8: 465–9.PubMedGoogle Scholar
  41. 41.
    Karube N, Adachi R, Ichikawa Y, Kosuge T, Yamazaki I, Soma T. Measurement of cytokine levels by coronary sinus blood sampling during cardiac surgery with cardiopulmonary bypass. ASAIO J 1996; 42: M787–91.PubMedCrossRefGoogle Scholar
  42. 42.
    Wan S, Leclerc JL, Desmet JM, Barvais L, Vincent JL. The source of cytokines during clinical cardiopulmonary bypass: the heart or the lung? Chest 1996; 110: 16S.CrossRefGoogle Scholar
  43. 43.
    Sablotzki A, Dehne M, Menges T, Lehmann N. Alterations of the cytokine network in patients undergoing cardiopulmonary bypass. Perfusion 1997; 12: 393–403.PubMedCrossRefGoogle Scholar
  44. 44.
    Hammer S, Fuchs AT, Rinker C, Daebritz S, Kozlik-Feldmann R, Netz H. Interleukin-6and procalcitonin in serum of children undergoing cardiac surgery with cardiopulmonary bypass. Acta Cardiol 2004; 59: 624–9.PubMedCrossRefGoogle Scholar
  45. 45.
    Grünenfelder J, Zünd G, Schoeberlein A, et al. Expression of adhesion molecules and cytokines after coronary artery bypass grafting during normothermic and hypothermic cardiac arrest. Eur J Cardiothorac Surg 2000; 17: 723–8.PubMedCrossRefGoogle Scholar
  46. 46.
    Menasche P, Haydar S, Paynet J, DuBuit C, Merval R. A potential mechanism of vasodilation after warm heart surgery. The temperature-dependent release of cytokines. J Thorac Cardiovasc Surg 1994; 107: 293–9.PubMedGoogle Scholar
  47. 47.
    Ohata T, Sawa Y, Kadoba K, et al. Normothermia has beneficial effects in cardiopulmonary bypass attenuating inflammatory reactions. ASAIO J 1995; 41: M288–91.PubMedCrossRefGoogle Scholar
  48. 48.
    Steinberg JB, Kapelanski DP, Olson JD, Weiler JM. Cytokine and complement levels in patients undergoing cardiopulmonary bypass. J Thorac Cardiovasc Surg 1993; 106: 1008–16.PubMedGoogle Scholar
  49. 49.
    Carvalho MV, Maluf MA, Catani R, et al. Cytokines and pediatric open heart surgery with cardiopulmonary bypass. Cardiol Young 2001; 11: 36–43.PubMedCrossRefGoogle Scholar
  50. 50.
    Saatvedt K, Lindberg H, Geiran OR, et al. Complement activation and release of tumour necrosis factor alpha, interleukin-2, interleukin-6 and soluble tumour necrosis factor and interleukin-2 receptors during and after cardiopulmonary bypass in children. Scand J Clin Lab Invest 1995; 55: 79–86.PubMedCrossRefGoogle Scholar
  51. 51.
    Whitten CW, Hill GE, Ivy R, Greilich PE, Lipton JM. Does the duration of cardiopulmonary bypass or aortic cross-clamp, in the absence of blood and/or blood product administration, influence the IL-6 response to cardiac surgery? Anesth Analg 1998; 86: 28–33.PubMedGoogle Scholar
  52. 52.
    Tárnok A, Hambsch J, Emmrich F, et al. Complement activation, cytokines, and adhesion molecules in children undergoing cardiac surgery with or without cardiopulmonary bypass. Pediatr Cardiol 1999; 20: 113–25.PubMedCrossRefGoogle Scholar
  53. 53.
    Olsson C, Siegbahn A, Henze A, et al. Heparin-coated cardiopulmonary bypass circuits reduce circulating complement factors and interleukin-6 in paediatric heart surgery. Scand Cardiovasc J 2000; 34: 33–40.PubMedCrossRefGoogle Scholar
  54. 54.
    Butler J, Chong GL, Baigrie RJ, Pillai R, Westaby S, Rocker GM. Cytokine responses to cardiopulmonary bypass with membrane and bubble oxygenation. Ann Thorac Surg 1992; 53: 833–8.PubMedCrossRefGoogle Scholar
  55. 55.
    Zupancich E, Paparella D, Turani F, et al. Mechanical ventilation affects inflammatory mediators in patients undergoing cardiopulmonary bypass for cardiac surgery: a randomized clinical trial. J Thorac Cardiovasc Surg 2005; 130: 378–83.PubMedCrossRefGoogle Scholar
  56. 56.
    Sawa Y, Shimazaki Y, Kadoba K, et al. Attenuation of cardiopulmonary bypass-derived inflammatory reactions reduces myocardial reperfusion injury in cardiac operations. J Thorac Cardiovasc Surg 1996; 111: 29–35.PubMedCrossRefGoogle Scholar
  57. 57.
    Seghaye MC, Duchateau J, Grabitz RG, et al. Influence of low-dose aprotinin on the inflammatory reaction due to cardiopulmonary bypass in children. Ann Thorac Surg 1996; 61: 1205–11.PubMedCrossRefGoogle Scholar
  58. 58.
    Brull DJ, Sanders J, Rumley A, Lowe GD, Humphries SE, Montgomery HE. Impact of angiotensin converting enzyme inhibition on post-coronary artery bypass interleukin 6 release. Heart 2002; 87: 252–5.PubMedPubMedCentralCrossRefGoogle Scholar
  59. 59.
    Fansa I, Gol M, Nisanoglu V, Yavas S, Iscan Z, Tasdemir O. Does diltiazem inhibit the inflammatory response in cardiopulmonary bypass? Med Sci Monit 2003; 9: PI30–6.PubMedGoogle Scholar
  60. 60.
    Greilich PE, Brouse CF, Whitten CW, Chi L, Dimaio JM, Jessen ME. Antifibrinolytic therapy during cardiopulmonary bypass reduces proinflammatory cytokine levels: a randomized, doubleblind, placebo-controlled study of epsilon-aminocaproic acid and aprotinin. J Thorac Cardiovasc Surg 2003; 126: 1498–503.PubMedCrossRefGoogle Scholar
  61. 61.
    Sucu N, Cinel I, Unlu A, et al. N-acetylcysteine for preventing pump-induced oxidoinflammatory response during cardiopulmonary bypass. Surg Today 2004; 34: 237–42.PubMedCrossRefGoogle Scholar
  62. 62.
    Nakanishi K, Takeda S, Sakamoto A, Kitamura A. Effects of ulinastatin treatment on the cardiopulmonary bypass-induced hemodynamic instability and pulmonary dysfunction. Crit Care Med 2006; 34: 1351–7.PubMedCrossRefGoogle Scholar
  63. 63.
    Matsumura Y, Morita K, Kinouchi K, Nakamura K, Kagawa H. Effect of modified ultrafiltration after operations for congenital heart disease with pulmonary hypertension. Tokyo Jikeikai Ika Daigaku Zasshi 2007; 122: 185–94.Google Scholar
  64. 64.
    Davies PG, Venkatesh B, Morgan TJ, et al. Plasma acetate, gluconate and interleukin-6 profiles during and after cardiopulmonary bypass: a comparison of Plasma-Lyte 148 with a bicarbonatebalanced solution. Crit Care 2011; 15: R21.PubMedPubMedCentralCrossRefGoogle Scholar
  65. 65.
    Xia WF, Liu Y, Zhou QS, Tang QZ, Zou HD. Comparison of the effects of propofol and midazolam on inflammation and oxidase stress in children with congenital heart disease undergoing cardiac surgery. Yonsei Med J 2011; 52: 326–32.PubMedPubMedCentralCrossRefGoogle Scholar
  66. 66.
    Kawahito K, Adachi H, Ino T. Influence of surgical procedures on interleukin-6 and monocyte chemotactic and activating factor responses: CABG vs. valvular surgery. J Interferon Cytokine Res 2000; 20: 1–6.PubMedCrossRefGoogle Scholar
  67. 67.
    Parolari A, Camera M, Alamanni F, et al. Systemic inflammation after on-pump and off-pump coronary bypass surgery: a one-month follow-up. Ann Thorac Surg 2007; 84: 823–8.PubMedCrossRefGoogle Scholar
  68. 68.
    Meng F, Ma J, Wang W, Lin B. Meta-analysis of interleukin 6, 8, and 10 between off-pump and on-pump coronary artery bypass groups. Bosn J Basic Med Sci 2017; 17: 85–94.PubMedPubMedCentralGoogle Scholar
  69. 69.
    Uyar IS, Onal S, Uysal A, Ozdemir U, Burma O, Bulut V. Evaluation of systemic inflammatory response in cardiovascular surgery via interleukin-6, interleukin-8, and neopterin. Heart Surg Forum 2014; 17: e13–7.CrossRefGoogle Scholar
  70. 70.
    Strüber M, Cremer JT, Gohrbandt B, et al. Human cytokine responses to coronary artery bypass grafting with and without cardiopulmonary bypass. Ann Thorac Surg 1999; 68: 1330–5.PubMedCrossRefGoogle Scholar
  71. 71.
    Gunaydin S, Sari T, McCusker K, Schonrock U, Zorlutuna Y. Clinical evaluation of minimized extracorporeal circulation in high-risk coronary revascularization: impact on air handling, inflammation, hemodilution and myocardial function. Perfusion 2009; 24: 153–62.PubMedCrossRefGoogle Scholar
  72. 72.
    Prondzinsky R, Knüpfer A, Stabenow I, et al. Cardiopulmonary bypass contributes to less than half of interleukin-6 release post cardiac surgery. Crit Care 1999; 3: P114.CrossRefGoogle Scholar
  73. 73.
    Gulielmos V, Menschikowski M, Dill H, et al. Interleukin-1, interleukin-6 and myocardial enzyme response after coronary artery bypass grafting-a prospective randomized comparison of the conventional and three minimally invasive surgical techniques. Eur J Cardiothorac Surg 2000; 18: 594–601.PubMedCrossRefGoogle Scholar
  74. 74.
    Ziabakhsh-Tabari S. Can perioperative C-reactive protein and interleukin-6 levels predict atrial fibrillation after coronary artery bypass surgery? Saudi Med J 2008; 29: 1429–31.PubMedGoogle Scholar
  75. 75.
    Mohamed AA, Nor El-Dien DM. Preoperative serum levels of interleukin-6 and interleukin-8 as predictors of the development of postoperative atrial fibrillation among patients undergoing coronary artery bypass grafting surgery. Egypt J Cardiovasc Anesth 2013; 7: 50–5.CrossRefGoogle Scholar
  76. 76.
    Hedman A, Larsson PT, Alam M, Wallen NH, Nordlander R, Samad BA. CRP, IL-6 and endothelin-1 levels in patients undergoing coronary artery bypass grafting. Do preoperative inflammatory parameters predict early graft occlusion and late cardiovascular events? Int J Cardiol 2007; 120: 108–14.PubMedCrossRefGoogle Scholar
  77. 77.
    Bacci MR, Murad N, Breda JR, et al. Inflammatory biomarker kinetics after mechanical and bioprosthetic valve replacement. Rev Assoc Med Bras (1992) 2015; 61: 58–60.CrossRefGoogle Scholar
  78. 78.
    Trikas A, Papathanasiou S, Tousoulis D, et al. Left atrial function, cytokines and soluble apoptotic markers in mitral stenosis: effects of valvular replacement. Int J Cardiol 2005; 99: 111–5.PubMedCrossRefGoogle Scholar
  79. 79.
    Yilmaz E, Ustundag B, Sen Y, Akarsu S, Kurt AN, Dogan Y. The levels of ghrelin, TNF-α, and IL-6 in children with cyanotic and acyanotic congenital heart disease. Mediators Inflamm 2007; 2007: 32403. doi: 10.1155/2007/32403.PubMedPubMedCentralCrossRefGoogle Scholar
  80. 80.
    Afify MF, Mohamed GB, El-Maboud MA, Abdel-Latif EA. Serum levels of ghrelin, tumor necrosis factor- and interleukin-6 in infants and children with congenital heart disease. J Trop Pediatr 2009; 55: 388–92.PubMedCrossRefGoogle Scholar
  81. 81.
    Wang D, Fang J, Wang R, et al. Elevated serum ghrelin, tumor necrosis factor-α and interleukin-6 in congenital heart disease. Pediatr Int 2016; 58: 259–64.PubMedCrossRefGoogle Scholar
  82. 82.
    Selimovic N, Bergh C-H, Andersson B, Sakiniene E, Carlsten H, Rundqvist B. Growth factors and interleukin-6 across the lung circulation in pulmonary hypertension. ERJ Express 2009; 34: 662–8. doi: 10.1183/09031936.00174908.CrossRefGoogle Scholar
  83. 83.
    Humbert M, Monti G, Brenot F, et al. Increased interleukin-1 and interleukin-6 serum concentrations in severe primary pulmonary hypertension. Am J Respir Crit Care Med 1995; 151: 1628–31.PubMedCrossRefGoogle Scholar
  84. 84.
    Madhok AB, Ojamaa K, Haridas V, Parnell VA, Pahwa S, Chowdhury D. Cytokine response in children undergoing surgery for congenital heart disease. Pediatr Cardiol 2006; 27: 408–13.PubMedCrossRefGoogle Scholar
  85. 85.
    Gupta M, Johann-Liang R, Sison CP, Quaegebeur J, Friedman DM. Relation of early pleural effusion after pediatric open heart surgery to cardiopulmonary bypass time and systemic inflammation as measured by serum interleukin-6. AmJ Cardiol 2001; 87: 1220–3, A7-8.CrossRefGoogle Scholar
  86. 86.
    Modan-Moses D, Prince A, Kanety H, et al. Patterns and prognostic value of troponin, interleukin-6, and leptin after pediatric openheart surgery. J Crit Care 2009; 24: 419–25.PubMedCrossRefGoogle Scholar
  87. 87.
    Gessler P, Pfenninger J, Pfammatter JP, Carrel T, Baenziger O, Dahinden C. Plasma levels of interleukin-8 and expression of interleukin-8 receptors on circulating neutrophils and monocytes after cardiopulmonary bypass in children. J Thorac Cardiovasc Surg 2003; 126: 718–25.PubMedCrossRefGoogle Scholar
  88. 88.
    Ashraf SS, Tian Y, Cowan D, et al. Proinflammatory cytokine release during pediatric cardiopulmonary bypass: influence of centrifugal and roller pumps. J Cardiothorac Vasc Anesth 1997; 11: 718–22.PubMedCrossRefGoogle Scholar
  89. 89.
    Furuya Y, Satoh T, Kuwana M. Interleukin-6 as a potential therapeutic target for pulmonary arterial hypertension. Int J Rheumatol 2010; 2010: 720305. doi: 10.1155/2010/720305.PubMedPubMedCentralCrossRefGoogle Scholar
  90. 90.
    Boulate D, Perros F, Dorfmuller P, et al. Pulmonary microvascular lesions regress in reperfused chronic thromboembolic pulmonary hypertension. J Heart Lung Transplant 2015; 34: 457–67.PubMedCrossRefGoogle Scholar
  91. 91.
    Mlejnsky F, Klein AA, Lindner J, et al. A randomised controlled trial of roller versus centrifugal cardiopulmonary bypass pumps in patients undergoing pulmonary endarterectomy. Perfusion 2015; 30: 520–8.PubMedCrossRefGoogle Scholar
  92. 92.
    Botta Jr. DM. Biomarkers for diagnosis in thoracic aortic disease: PRO. Cardiol Clin 2010; 28: 207–11.PubMedCrossRefGoogle Scholar
  93. 93.
    Wen D, Zhou XL, Li JJ, et al. Plasma concentrations of interleukin-6, C-reactive protein, tumor necrosis factor- and matrix metalloproteinase-9 in aortic dissection. Clin Chim Acta 2012; 413: 198–202.PubMedCrossRefGoogle Scholar
  94. 94.
    Artemiou P, Charokopos N, Rouska E, et al. C-reactive protein/interleukin-6 ratio as marker of the size of the uncomplicated thoracic aortic aneurysms. Interact Cardiovasc Thorac Surg 2012; 15: 871–7.PubMedPubMedCentralCrossRefGoogle Scholar
  95. 95.
    Dawson J, Cockerill GW, Choke E, Belli AM, Loftus I, Thompson MM. Aortic aneurysms secrete interleukin-6 into the circulation. J Vasc Surg 2007; 45: 350–6.PubMedCrossRefGoogle Scholar
  96. 96.
    Wallinder J, Bergqvist D, Henriksson AE. Proinflammatory and anti-inflammatory cytokine balance in patients with abdominal aortic aneurysm and the impact of aneurysm size. Vasc Endovascular Surg 2009; 43: 258–61.PubMedCrossRefGoogle Scholar
  97. 97.
    Juvonen J, Surcel HM, Satta J, et al. Elevated circulating levels of inflammatory cytokines in patients with abdominal aortic aneurysm. Arterioscler Thromb Vasc Biol 1997; 17: 2843–7.PubMedCrossRefGoogle Scholar
  98. 98.
    Flondell-Sité D, Lindblad B, Kölbel T, Gottsäter A. Cytokines and systemic biomarkers are related to the size of abdominal aortic aneurysms. Cytokine 2009; 46: 211–5.PubMedCrossRefGoogle Scholar
  99. 99.
    Swartbol P, Truedsson L, Norgren L. Adverse reactions during endovascular treatment of aortic aneurysms may be triggered by interleukin 6 release from the thrombotic content. J Vasc Surg 1998; 28: 664–8.PubMedCrossRefGoogle Scholar
  100. 100.
    Cheuk BL, Chan YC, Cheng SW. Changes in inflammatory response after endovascular treatment for type B aortic dissection. PLoS One 2012; 7: e37389.CrossRefGoogle Scholar
  101. 101.
    Gabriel EA, Locali RF, Romano CC, Duarte AJ, Palma JH, Buffolo E. Analysis of the inflammatory response in endovascular treatment of aortic aneurysms. Eur J Cardiothorac Surg 2007; 31: 406–12.PubMedCrossRefGoogle Scholar
  102. 102.
    Dawson JA, Choke E, Cockerill GW, Loftus IM, Thompson MM. The long-term effects of open and endovascular aneurysm repair on circulating interleukin-6. Eur J Vasc Endovasc Surg 2009; 37: 43–5.PubMedCrossRefGoogle Scholar
  103. 103.
    Stamataki E, Stathopoulos A, Garini E, Glynos K, Routsi CI. 4AP9-4 serum interleukin 6 increase correlates with s100b protein in elective abdominal aortic aneurysm repair. Eur J Anaesthesiol 2010; 27: 90.CrossRefGoogle Scholar
  104. 104.
    Treska V, Kocova J, Boudova L, Topolcan O, Molacek J, Tonar Z. Tissue levels of interleukins 6, 8 and of tumor necrosis factor alpha in the wall of ruptured and asymptomatic abdominal aortic aneurysms. Eur Surg 2007; 39: 307–10.CrossRefGoogle Scholar
  105. 105.
    Seino Y, Ikeda U, Shimada K. Increased expression of interleukin 6 mRNA in cardiac myxomas. Br Heart J 1993; 69: 565–7.PubMedPubMedCentralCrossRefGoogle Scholar
  106. 106.
    Mendoza CE, Rosado MF, Bernal L. The role of interleukin-6 in cases of cardiac myxoma. Clinical features, immunologic abnormalities, and a possible role in recurrence. Tex Heart Inst J 2001; 28: 3–7.Google Scholar
  107. 107.
    Abdallah AN, Billes MA, Attia Y, Doutremepuich C, Cassaigne A, Iron A. Evaluation of plasma levels of tumour necrosis factor alpha and interleukin-6 as rejection markers in a cohort of 142 heart grafted patients followed by endomyocardial biopsy. Eur Heart J 1997; 18: 1024–9.PubMedCrossRefGoogle Scholar
  108. 108.
    Perez-Villa F, Benito B, Llancaqueo M, Cuppoletti A, Roig E. Elevated levels of serum interleukin-6 are associated with low grade cellular rejection in patients with heart transplantation. Transplant Proc 2006; 38: 3012–5.PubMedCrossRefGoogle Scholar
  109. 109.
    Kubala L, Cíz M, Vondrácek J, et al. Perioperative and postoperative course of cytokines and the metabolic activity of neutrophils in human cardiac operations and heart transplantation. J Thorac Cardiovasc Surg 2002; 124: 1122–9.PubMedCrossRefGoogle Scholar
  110. 110.
    Sakai T, Latson TW, Whitten CW, et al. Perioperative measurements of interleukin-6 and alpha-melanocyte-stimulating hormone in cardiac transplant patients. J Cardiothorac Vasc Anesth 1993; 7: 17–22.PubMedCrossRefGoogle Scholar
  111. 111.
    Birks EJ, Burton PB, Owen V, et al. Elevated tumor necrosis factor-alpha and interleukin-6 in myocardium and serum of malfunctioning donor hearts. Circulation 2000; 102: III352–8.PubMedGoogle Scholar
  112. 112.
    Plenz G, Eschert H, Erren M, et al. The interleukin-6/interleukin-6-receptor system is activated in donor hearts. J Am Coll Cardiol 2002; 39: 1508–12.PubMedCrossRefGoogle Scholar
  113. 113.
    Finkel MS, Hoffman RA, Shen L, Oddis CV, Simmons RL, Hattler BG. Interleukin-6 (IL-6) as a mediator of stunned myocardium. Am J Cardiol 1993; 71: 1231–2.PubMedCrossRefGoogle Scholar
  114. 114.
    Hummel M, Czerlinski S, Friedel N, et al. Interleukin-6 and interleukin-8 concentrations as predictors of outcome in ventricular assist device patients before heart transplantation. Crit Care Med 1994; 22: 448–54.PubMedCrossRefGoogle Scholar
  115. 115.
    Clark AL, Loebe M, Potapov EV, et al. Ventricular assist device in severe heart failure: effects on cytokines, complement and body weight. Eur Heart J 2001; 22: 2275–83.PubMedCrossRefGoogle Scholar
  116. 116.
    Goldstein DJ, Moazami N, Seldomridge JA, et al. Circulatory resuscitation with left ventricular assist device support reduces interleukins 6 and 8 levels. Ann Thorac Surg 1997; 63: 971–4.PubMedCrossRefGoogle Scholar
  117. 117.
    Loebe M, Koster A, Sänger S, et al. Inflammatory response after implantation of a left ventricular assist device: comparison between the axial flow MicroMed DeBakey VAD and the pulsatile Novacor device. ASAIO J 2001; 47: 272–4.PubMedCrossRefGoogle Scholar
  118. 118.
    Birks EJ, Latif N, Owen V, et al. Quantitative myocardial cytokine expression and activation of the apoptotic pathway in patients who require left ventricular assist devices. Circulation 2001; 104: I233–40.PubMedCrossRefGoogle Scholar
  119. 119.
    Caruso R, Caselli C, Cozzi L, et al. Myocardial interleukin-6 in the setting of left ventricular mechanical assistance: relation with outcome and C-reactive protein. Clin Chem Lab Med 2015; 53: 1359–66.PubMedCrossRefGoogle Scholar

Copyright information

© John Libbey Eurotext 2018

Authors and Affiliations

  1. 1.Department of Cardiothoracic Surgery, The First Hospital of Putian, Teaching Hospital, Fujian Medical UniversityFujian ProvincePutianPeople’s Republic of China

Personalised recommendations