Advertisement

European Journal of Dermatology

, Volume 27, Issue 6, pp 641–645 | Cite as

FOXI2: a possible gene contributing to ectodermal dysplasia

  • Mazen Kurban
  • Savo Bou Zeineddine
  • Lamiaa Hamie
  • Remi Safi
  • Ossama Abbas
  • Abdul Ghani Kibbi
  • Fadi Bitar
  • Georges NemerEmail author
Genes and skin

Abstract

Background

Cardio-facio-cutaneous syndrome (CFC), Noonan syndrome (NS), and Costello syndrome are a group of diseases that belong to the RASopathies. The syndromes share clinical features making diagnosis a challenge.

Objectives

To investigate the phenotype and genotype of a 10-year-old Iraqi girl with overlapping features of CFC, NS, and Costello syndromes, with additional features of ectodermal dysplasia.

Materials & methods

DNA was examined by exome sequencing and protein expression by immunohistochemistry.

Results

Exome sequencing identified a mutation in the SOS1 gene and a de novo deletion in the FOXI2 gene whichwas neither present in the international databases, nor in 400 chromosomes from the same population. Based on immunohistochemical staining, FOXI2was identified in the basal cell layer of the skin and overlapped with the expression of P63, a major player in ectodermal dysplasia.

Conclusion

We therefore suggest screening for FOXI2 mutation in the setting of ectodermal features that are not associated with genes known to contribute to ectodermal dysplasia.

Key words

cardio-facio-cutaneous syndrome Noonan syndrome RAS SOS1 FOXI2 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Roberts A, Allanson J, Jadico SK, et al. The cardiofaciocutaneous syndrome. J Med Genet 2006; 43: 833–42.CrossRefGoogle Scholar
  2. 2.
    Rauen KA. Cardiofaciocutaneous Syndrome. In: Pagon RA, Adam MP, Ardinger HH, et al, editors. GeneReviews(R). Seattle (WA), 1993.Google Scholar
  3. 3.
    Pierpont ME, Magoulas PL, Adi S, et al. Cardio-facio-cutaneous syndrome: clinical features, diagnosis, and management guidelines. Pediatrics 2014; 134: e1149–62.CrossRefGoogle Scholar
  4. 4.
    Myers A, Bernstein JA, Brennan ML, et al. Perinatal features of the RASopathies: Noonan syndrome, cardiofaciocutaneous syndrome and Costello syndrome. Am J Med Genet A 2014; 164A: 2814–21.CrossRefGoogle Scholar
  5. 5.
    Rauen K. The RASopathies. Annu Rev Genomics Hum Genet 2013; 14: 355–69.CrossRefGoogle Scholar
  6. 6.
    Romano AA, Allanson JE, Dahlgren J, et al. Noonan syndrome: clinical features, diagnosis, and management guidelines. Pediatrics 2010; 126: 746–59.CrossRefGoogle Scholar
  7. 7.
    Niihori T, Aoki Y, Narumi Y, et al. Germline KRAS and BRAF mutations in cardio-facio-cutaneous syndrome. Nat Genet 2006; 38: 294–6.CrossRefGoogle Scholar
  8. 8.
    Rodriguez-Viciana P, Tetsu O, Tidyman WE, et al. Germline mutations in genes within the MAPK pathway cause cardio-facio-cutaneous syndrome. Science 2006; 311: 1287–90.CrossRefGoogle Scholar
  9. 9.
    Nystrom AM, Ekvall S, Berglund E, et al. Noonan and cardiofacio-cutaneous syndromes: two clinically and genetically overlapping disorders. J Med Genet 2008; 45: 500–6.CrossRefGoogle Scholar
  10. 10.
    Allanson JE, Bohring A, Dorr HG, et al. The face of Noonan syndrome: does phenotype predict genotype. Am J Med Genet A 2010; 152A: 1960–6.CrossRefGoogle Scholar
  11. 11.
    Bentires-Alj M, Kontaridis MI, Neel BG. Stops along the RAS pathway in human genetic disease. Nat Med 2006; 12: 283–5.CrossRefGoogle Scholar
  12. 12.
    Roberts AE, Araki T, Swanson KD, et al. Germline gain-of-function mutations in SOS1 cause Noonan syndrome. Nat Genet 2007; 39: 70–4.CrossRefGoogle Scholar
  13. 13.
    Tartaglia M, Pennacchio LA, Zhao C, et al. Gain-of-function SOS1 mutations cause a distinctive form of Noonan syndrome. Nat Genet 2007; 39: 75–9.CrossRefGoogle Scholar
  14. 14.
    Hart TC, Zhang Y, Gorry MC, et al. A mutation in the SOS1 gene causes hereditary gingival fibromatosis type 1. Am J Hum Genet 2002; 70: 943–54.CrossRefGoogle Scholar
  15. 15.
    Zenker M, Horn D, Wieczorek D, et al. SOS1 is the second most common Noonan gene but plays no major role in cardio-faciocutaneous syndrome. J Med Genet 2007; 44: 651–6.CrossRefGoogle Scholar
  16. 16.
    Ferrero GB, Baldassarre G, Delmonaco AG, et al. Clinical and molecular characterization of 40 patients with Noonan syndrome. Eur J Med Genet 2008; 51: 566–72.CrossRefGoogle Scholar
  17. 17.
    Lepri F, De Luca A, Stella L, et al. SOS1 mutations in Noonan syndrome: molecular spectrum, structural insights on pathogenic effects, and genotype-phenotype correlations. Hum Mutat 2011; 32: 760–72.CrossRefGoogle Scholar
  18. 18.
    Narumi Y, Aoki Y, Niihori T, et al. Clinical manifestations in patients with SOS1 mutations range from Noonan syndrome to CFC syndrome. J Hum Genet 2008; 53: 834–41.CrossRefGoogle Scholar
  19. 19.
    Nemer G, Nemer M. Transcriptional activation of BMP-4 and regulation of mammalian organogenesis by GATA-4 and-6. Dev Biol 2003; 254: 131–48.CrossRefGoogle Scholar
  20. 20.
    Fahed AC, Bitar FF, Khalaf RI, et al. The Lebanese allele at the LDLR in normocholesterolemic people merits reconsideration of genotype phenotype correlations in familial hypercholesterolemia. Endocrine 2012; 42: 445–8.CrossRefGoogle Scholar
  21. 21.
    Fahed AC, Nemer GM. Familial hypercholesterolemia: the lipids or the genes? Nutr Metab (Lond) 2011; 8: 23.CrossRefGoogle Scholar
  22. 22.
    Farooq M, Kurban M, Fujimoto A, et al. A homozygous frameshift mutation in the HOXC13 gene underlies pure hair and nail ectodermal dysplasia in a Syrian family. Hum Mutat 2013; 34: 578–81.CrossRefGoogle Scholar
  23. 23.
    Farooq M, Kurban M, Abbas O, et al. Netherton syndrome showing a large clinical overlap with generalized inflammatory peeling skin syndrome. Eur J Dermatol 2012; 22: 412–3.PubMedGoogle Scholar
  24. 24.
    El-Rassy I, Bou-Abdallah J, Al-Ghadban S, et al. Absence of NOTCH2 and Hey2 mutations in a familial Alagille syndrome case with a novel frameshift mutation in JAG1. Am J Med Genet A 2008; 146: 937–9.CrossRefGoogle Scholar
  25. 25.
    Fahed AC, Khalaf R, Salloum R, et al. Variable expressivity and co-occurrence of LDLR and LDLRAP1 mutations in familial hypercholesterolemia: failure of the dominant and recessive dichotomy. Mol Genet Genomic Med 2016; 4: 283–91.CrossRefGoogle Scholar
  26. 26.
    Cooper DN, Krawczak M, Polychronakos C, et al. Where genotype is not predictive of phenotype: towards an understanding of the molecular basis of reduced penetrance in human inherited disease. Hum Genet 2013; 132: 1077–130.CrossRefGoogle Scholar
  27. 27.
    Cha SW, McAdams M, Kormish J, et al. Foxi2 is an animally localized maternal mRNA in Xenopus, and an activator of the zygotic ectoderm activator Foxi1e. PLoS One 2012; 7: e41782.CrossRefGoogle Scholar
  28. 28.
    Pohl BS, Knochel W. Of Fox and Frogs: Fox (fork head/winged helix) transcription factors in Xenopus development. Gene 2005; 344: 21–32.CrossRefGoogle Scholar
  29. 29.
    South AP, Ashton GH, Willoughby C, et al. EEC (Ectrodactyly, Ectodermal dysplasia. Clefting) syndrome: heterozygous mutation in the p63 gene (R279H) and DNA-based prenatal diagnosis. Br J Dermatol 2002; 146: 216–20.CrossRefGoogle Scholar
  30. 30.
    van Straten C, Butow KW. Gene p63: In ectrodactyly-ectodermal dysplasia clefting, ankyloblepharon-ectodermal dysplasia, Rapp-Hodgkin syndrome. Ann Maxillofac Surg 2013; 3: 58–61.CrossRefGoogle Scholar
  31. 31.
    Paranaiba LM, Martelli-Junior H, de Miranda RT, et al. Ectrodactyly-ectodermal dysplasia-clefting syndrome associated with p63 mutation and an uncommon phenotype. Cleft Palate Craniofac J 2010; 47: 544–7.CrossRefGoogle Scholar
  32. 32.
    Copley RR. The gene for X-linked anhidrotic ectodermal dysplasia encodes a TNF-like domain. J Mol Med (Berl) 1999; 77: 361–3.CrossRefGoogle Scholar
  33. 33.
    Drogemuller C, Karlsson EK, Hytonen MK, et al. A mutation in hairless dogs implicates FOXI3 in ectodermal development. Science 2008; 321: 1462.CrossRefGoogle Scholar
  34. 34.
    Khatri SB, Groves AK. Expression of the Foxi2 and Foxi3 transcription factors during development of chicken sensory placodes and pharyngeal arches. Gene Expr Patterns 2013; 13: 38–42.CrossRefGoogle Scholar
  35. 35.
    Solomon KS, Logsdon JM Jr., Fritz A. Expression and phylogenetic analyses of three zebrafish FoxI class genes. Dev Dyn 2003; 228: 301–7.CrossRefGoogle Scholar

Copyright information

© JLE/Springer 2018

Authors and Affiliations

  • Mazen Kurban
    • 1
    • 2
    • 3
  • Savo Bou Zeineddine
    • 4
  • Lamiaa Hamie
    • 5
  • Remi Safi
    • 1
  • Ossama Abbas
    • 1
  • Abdul Ghani Kibbi
    • 1
  • Fadi Bitar
    • 6
  • Georges Nemer
    • 2
    Email author
  1. 1.Department of DermatologyAmerican University of BeirutBeirutLebanon
  2. 2.Department of Biochemistry and Molecular GeneticsAmerican University of BeirutBeirutLebanon
  3. 3.Department of DermatologyColumbia UniversityNew YorkUSA
  4. 4.American University of BeirutBeirutLebanon
  5. 5.Department of Internal MedicineAmerican University of BeirutBeirutLebanon
  6. 6.Department of PediatricsAmerican University of BeirutBeirutLebanon

Personalised recommendations