, Volume 28, Issue 3, pp 827–840 | Cite as

Geographic variation in nutrient availability, stoichiometry, and metal concentrations of plants and pore-water in ombrotrophic bogs in New England, USA

  • Nicholas J. Gotelli
  • Paula J. Mouser
  • Stephen P. Hudman
  • Sergio E. Morales
  • Donald S. Ross
  • Aaron M. Ellison


Geographic trends in surface water chemistry and leaf tissue nutrients may reflect gradients of nutrient limitation and broad-scale anthropogenic inputs. In 24 rain-fed (ombrotrophic) peatland bogs in Massachusetts and Vermont, we measured nutrient and metal concentrations in pore-water and in leaf tissues of three common bog plant genera — leather leaf (Chamaedaphne calyculata), northern pitcher plant (Sarracenia purpurea), and peat moss (Sphagnum spp.). The concentrations of N, P, and K were low in leaf tissues of all three plant genera, as were the concentrations of many trace heavy metals, including Cr, Cu, Co, Cd, Mo, and Pb. Stoichiometric ratios of macronutrients (N:P, P:K, and N:K) in plant leaves suggested that plant growth in the sampled bogs was limited by P, or was co-limited by all three macronutrients. N:P and N:K nutrient ratios of Sarracenia purpurea and Sphagnum spp. increased toward the northwest and with elevation, but stoichiometric ratios of Chamaedaphne calyculata did not show any clear geographic trends. A principal components analysis revealed additional distinct differences among the three plant genera in their nutrient and metal concentrations. Furthermore, dissolved organic carbon (DOC), dissolved organic nitrogen (DON), Cu, Mg, NO3, Al, and K in porewater increased from the northwest (northwestern Vermont) to the southeast (Cape Cod and eastern Massachusetts near Boston), a gradient of increasing human population density and urbanization. In contrast, pore-water concentrations of SO4 and Al were highest in the western sites, and SO4 concentrations increased with elevations. These patterns may reflect atmospheric inputs from the Ohio River Valley leading to increased acidic deposition, causing Al to be leached from soils. Because bogs are naturally low in nutrients and do not receive substantial inputs from surrounding groundwater, the chemical signatures and nutrient stoichiometry of specific bog plant species or genera may provide useful indicators for assessing spatiotemporal changes in atmospheric deposition.

Key Words

atmospheric deposition Chamaedaphne calyculata nitrogen phosphorus potassium Sarracenia purpurea Sphagnum 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature Cited

  1. Aerts, R. and F. S. Chapin. 2000. The mineral nutrition of wild plants revisited: a re-evaluation of processes and patterns. Advances in Ecological Research 30: 1–67.CrossRefGoogle Scholar
  2. Ågren, G. I. 2004. The C:N:P stoichiometry of autotrophs — theory and observations. Ecology Letters 7: 185–91.CrossRefGoogle Scholar
  3. Andrus, R. E. 1986. Some aspects of Sphagnum ecology. Canadian Journal of Botany 64: 416–26.CrossRefGoogle Scholar
  4. Bedford, B. L., M. R. Walbridge, and A. Aldous. 1999. Patterns of nutrient availability and plant diversity of temperate North American wetlands. Ecology 80: 2151–69.Google Scholar
  5. Błędzki, L. A. and A. M. Ellison. 1998. Population growth and production of Habrotrocha rosa Donner (Rotifera: Bdelloidea) and its contribution to the nutrient supply of its host, the northern pitcher plant, Sarracenia purpurea L. (Sarraceniaceae). Hydrobiologia 385: 193–200.CrossRefGoogle Scholar
  6. Błędzki, L. A. and A. M. Ellison. 2003. Diversity of rotifers from northeastern USA bogs with new species records for North America and New England. Hydrobiologia 497: 53–62.CrossRefGoogle Scholar
  7. Bobbink, R., M. Hornung, and J. G. M. Roelofs. 1998. The effects of air-borne nitrogen pollutants on species diversity in natural and semi-natural European vegetation. Journal of Ecology 86: 717–38.CrossRefGoogle Scholar
  8. Chapin, F. S., P. M. Vitousek, and K. Van Cleve. 1986. The nature of nutrient limitation in plant communities. American Naturalist 127: 48–58.CrossRefGoogle Scholar
  9. Clesceri, L. S., A. E. Greenberg, and A. D. Eaton. 1998. Standard Methods for the Examination of Water and Wastewater, twentieth edition. American Public Health Association, Washington, DC, USA.Google Scholar
  10. Damman, A. W. H. 1986. Hydrology, development, and biogeochemistry of ombrogenous peat bogs with special reference to nutrient relocation in a western Newfoundland bog. Canadian Journal of Botany 64: 384–94.CrossRefGoogle Scholar
  11. Damman, A. W. H. 1990. Nutrient status of ombrotrophic peat bogs. Aquilo Serie Botanica 28: 5–14.Google Scholar
  12. Ellison, A. M. 2006. Nutrient limitation and stoichiometry of carnivorous plants. Plant Biology 8: 740–47.CrossRefPubMedGoogle Scholar
  13. Ellison, A. M. and N. J. Gotelli. 2002. Nitrogen availability alters the expression of carnivory in the northern pitcher plant Sarracenia purpurea. Proceedings of the National Academy of Sciences, USA 99: 4409–12.CrossRefGoogle Scholar
  14. Ellison, A. M., N. J. Gotelli, J. S. Brewer, D. L. Cochran-Stafira, J. Kneitel, T. E. Miller, A. C. Worley, and R. Zamora. 2003. The evolutionary ecology of carnivorous plants. Advances in Ecological Research 33: 1–74.CrossRefGoogle Scholar
  15. Evans, G. C., S. A. Norton, I. J. Fernandez, J. S. Kahl, and D. Hanson. 2005. Changes in concentrations of major elements and trace metals in northeastern US-Canadian sub-alpine forest floors. Water, Air, and Soil Pollution 163: 245–67.CrossRefGoogle Scholar
  16. Giller, K. E. and B. D. Wheeler. 1988. Acidification and succession in a flood-plain mire in the Norfolk broadland, U.K. Journal of Ecology 76: 849–66.CrossRefGoogle Scholar
  17. Givnish, T. J. 1989. Ecology and evolution of carnivorous plants. p. 243–90. In W. G. Abramson (ed.) Plant — Animal Interactions. McGraw-Hill Publishers, Toronto, Canada.Google Scholar
  18. Gorham, E., S. J. Eisenreich, J. Ford, and M. V. Santelman. 1985. The chemistry of bog waters. p. 339–63. In W. Stumm (ed.) Chemical Processes in Lakes. John Wiley & Sons, Inc., New York, NY, USA.Google Scholar
  19. Gotelli, N. J. and A. M. Ellison. 2002a. Biogeography at a regional scale: determinants of ant species density in bogs and forests of New England. Ecology 83: 1604–09.CrossRefGoogle Scholar
  20. Gotelli, N. J. and A. M. Ellison. 2002b. Nitrogen deposition and extinction risk in the northen pitcher plant Sarracenia purpurea. Ecology 83: 2758–65.CrossRefGoogle Scholar
  21. Gotelli, N. J. and A. M. Ellison. 2004. A Primer of Ecological Statistics. Sinauer Associates, Sunderland, MA, USA.Google Scholar
  22. Güsewell, S. 2004. N:P ratios in terrestrial plants: variation and functional significance. New Phytologist 164: 243–66.CrossRefGoogle Scholar
  23. Güsewell, S. 2005. High nitrogen:phosphorus ratios reduce nutrient retention and second-year growth of wetland sedges. New Phytologist 166: 537–50.CrossRefPubMedGoogle Scholar
  24. Heijmans, M. M. P. D., H. Klees, and F. Berendse. 2002. Competition between Sphagnum magellanicum and Eriophorum angustifolium as affected by raised CO2 and increased N deposition. Oecologia 97: 415–25.Google Scholar
  25. Holden, J. and T. P. Burt. 2003. Hydrological studies on blanket peat: the significance of the acrotelm-catotelm model. Journal of Ecology 91: 86–102.CrossRefGoogle Scholar
  26. Holland, E. A., B. H. Braswell, J. Sulzman, and J-F. Lamarque. 2005. Nitrogen deposition onto the United States and Western Europe: synthesis of observations and models. Ecological Applications 15: 38–57.CrossRefGoogle Scholar
  27. Hoosbeek, M. R., N. van Breeman, H. Vasander, A. Buttler, and F. Berendse. 2002. Potassium limits potential growth of bog vegetation under elevated atmospheric CO2 and N deposition. Global Change Biology 8: 1130–38.CrossRefGoogle Scholar
  28. Kerkhoff, A. J., B. J. Enquist, J. J. Elser, and W. F. Fagan. 2005. Plant allometry, stoichiometry and the temperature-dependence of primary productivity. Global Ecology and Biogeography 14: 585–98.CrossRefGoogle Scholar
  29. Kielland, K. 1994. Amino acid absorption by arctic plants: implications for plant nutrition and nitrogen cycling. Ecology 75: 2373–83.CrossRefGoogle Scholar
  30. Koerselman, W. and A. F. W. Meuleman. 1996. The vegetation N:P ratio: a new tool to detect the nature of nutrient limitation. Journal of Applied Ecology 33: 1441–50.CrossRefGoogle Scholar
  31. Lamers, L. P. M., C. Farhoush, J. M. van Groenendael, and J. G. M. Roelofs. 1999. Calcareous groundwater raises bogs; the concept of ombrotrophy revisited. Journal of Ecology 87: 639–48.CrossRefGoogle Scholar
  32. Lehmann, C. M. B., V. C. Bowersox, and S. M. Larson. 2005. Spatial and temporal trends of precipitation chemistry in the United States, 1985–2002. Environmental Pollution 135: 347–61.CrossRefPubMedGoogle Scholar
  33. Limpens, J., F. Berendse, and H. Klees. 2004. How phosphorus availability affects the impact of nitrogen deposition on Sphagnum and vascular plants in bogs. Ecosystems 7: 793–804.CrossRefGoogle Scholar
  34. Lynch, J. A., J. W. Grimm, and V. C. Bowersox. 1995. Trends in precipitation chemistry in the United States — a national perspective, 1980–1992. Atmospheric Environment 29: 1231–46.CrossRefGoogle Scholar
  35. Malm, W. C., B. A. Schichtel, R. B. Ames, and K. A. Gebhart. 2002. A 10-year spatial temporal trend of sulfate across the United States. Journal of Geophysical Research-Atmospheres 107(D22): Article Number 4627.Google Scholar
  36. Malmer, N., D. G. Horton, and D. H. Vitt. 1992. Element concentrations in mosses and surface waters of western Canadian mires relative to precipitation chemistry and hydrology. Ecoography 15: 114–28.CrossRefGoogle Scholar
  37. McLaughlin, S. B. and R. Wimmer. 1999. Tansley Review No. 104: Calcium physiology and terrestrial ecosystem processes. New Phytologist 142: 373–417.CrossRefGoogle Scholar
  38. Michelsen, A., I. K. Schmidt, S. Jonasson, C. Quarmby, and D. Sleep. 1996. Leaf 15N abundance of subarctic plants provides field evidence that ericoid, ectomycorrhizal and non- and arbuscular mycorrhizal species access different sources of soil nitrogen. Oecologia 105: 53–63.CrossRefGoogle Scholar
  39. Miller, E. K., A. J. Friedland, E. A. Arons, V. A. Mohnen, J. J. Battles, J. A. Panek, J. Kadlecek, and A. H. Johnson. 1993. Atmospheric deposition to forests along an elevational gradient at Whiteface Mountain, NY, USA. Atmospheric Environment A-27: 2121–36.Google Scholar
  40. Näsholm, T., A. Ekblad, A. Nordin, R. Giesler, M. Hõgberg, and P. Högberg. 1998. Boreal forest plants take up organic nitrogen. Nature 392: 914–16.CrossRefGoogle Scholar
  41. Niering, W. A. 1998. Wetlands. Alfred A. Knopf, New York, NY, USA.Google Scholar
  42. Norton, S. A., G. C. Evans, and J. S. Kahl. 1997. Comparison of Hg and Pb fluxes to hummocks and hollow of ombrotrophic Big Heath Bog and to nearby Sargent Mt. Pond, Maine, USA. Water, Air, and Soil Pollution 100: 271–86.CrossRefGoogle Scholar
  43. Olde, Venterink, H., N. M. Pieterse, J. D. M. Belgers, M. J. Wassen, and P. C. De Ruiter. 2002. N, P, and K budgets along nutrient availability and productivity gradients in wetlands. Ecological Applications 12: 1010–26.CrossRefGoogle Scholar
  44. Olde Venterink, H., M. J. Wassen, A. W. M. Verkroost, and P. C. De Ruiter. 2003. Species richness-productivity patterns differ between N-, P-, and K-limited wetlands. Ecology 84: 2191–99.CrossRefGoogle Scholar
  45. Proctor, M. C. F. 1992. Regional and local variation in the chemical composition of ombrogenous mire waters in Britain and Ireland. Journal of Ecology 80: 719–36.CrossRefGoogle Scholar
  46. Raab, T. K., D. A. Lipson, and R. K. Monson. 1996. Nonmycorrhizal uptake of amino acids by roots of the alpine sedge Kobresia myosuroides: implications for the alpine nitrogen cycle. Oecologia 108: 488–94.CrossRefGoogle Scholar
  47. Reich, P. B., D. S. Ellsworth, and C. Uhl. 1995. Leaf carbon and nutrient assimilation and conservation in species of differing successional status in an oligotrophic Amazonian forest. Functional Ecology 9: 65–76.CrossRefGoogle Scholar
  48. Rochefort, L. 2000. Sphagnum — a keystone genus in habitat restoration. The Bryologist 103: 503–08.CrossRefGoogle Scholar
  49. Schade, J. D., J. F. Espeleta, C. A. Klausmeier, M. E. McGroddy, S. A. Thomas, and L. Zhang. 2005. A conceptual framework for ecosystem stoichiometry: balancing resource supply and demand. Oikos 109: 40–51.CrossRefGoogle Scholar
  50. Schnell, D. E. 2002. Carnivorous plants of the United States and Canada, second edition. Timber Press, Portland, OR, USA.Google Scholar
  51. Schuster, P. F., D. P. Krabbenhoft, D. L. Naftz, L. D. Cecil, M. L. Olson, J. F. Dewild, D. D. Susong, J. R. Green, and M. L. Abbott. 2002. Atmospheric mercury deposition during the last 270 years: a glacial ice core record of natural and anthropogenic sources. Environmental Science and Technology 36: 2303–10.CrossRefPubMedGoogle Scholar
  52. Small, E. 1972. Photosynthetic rates in relation to nitrogen recycling as an adaptation to nutrient deficiency in peat bog plants. Canadian Journal of Botany 50: 2227–33.CrossRefGoogle Scholar
  53. Steinnes, E. 1997. Trace element profiles in ombrogeneous peat cores from Norway: evidence of long range atmospheric transport. Water, Air, and Soil Pollution 100: 405–13.CrossRefGoogle Scholar
  54. Sterner, R. W. and J. J. Elser. 2002. Ecological Stoichiometry: The Biology of Elements from Molecules to the Biosphere. Princeton University Press, Princeton, NJ, USA.Google Scholar
  55. Svensson, B. M. 1995. Competition between Sphagnum fuscum and Drosera rotundifolia: a case of ecosystem engineering. Oikos 74: 205–12.CrossRefGoogle Scholar
  56. Swain, E. B., D. R. Engstrom, M. E. Brigham, T. A. Hennig, and P. L. Brezonik. 1992. Increasing rates of atmospheric mercury deposition in midcontinental North America. Science 257: 784–87.CrossRefPubMedGoogle Scholar
  57. Swan, J. M. and A. M. Gill. 1970. The origins, spread, and consolidation of a floating bog in Harvard Pond, Petersham, Massachusetts. Ecology 51: 829–40.CrossRefGoogle Scholar
  58. Tilman, D. 1988. Dynamics and Structure of Plant Communities. Princeton University Press, Princeton, NJ, USA.Google Scholar
  59. Vanarsdale, A., J. Weiss, G. Keeler, E. Miller, G. Boulet, R. Brulotte, and L. Poissant. 2005. Patterns of mercury deposition and concentration in northeastern North America (1996–2002). Ecotoxicology 14: 37–52.CrossRefPubMedGoogle Scholar
  60. Verhoeven, J. T. A., C. E. Johnson, and C. T. Driscoll. 1996. Nitrogen- or phosphorus-limited growth in herbaceous wet vegetation: relations with atmospheric inputs and management regimes. Trends in Ecology and Evolution 11: 494–97.CrossRefGoogle Scholar
  61. Wakefield, A. E., N. J. Gotelli, S. E. Wittman, and A. M. Ellison. 2005. The effect of prey addition on nutrient stoichiometry, nutrient limitation, and morphology of the carnivorous plant Sarracenia purpurea (Sarraceniaceae). Ecology 86: 1737–43.CrossRefGoogle Scholar
  62. West, S., D. J. Charman, J. P. Grattan, and A. K. Cherburkin. 1997. Heavy metal in Holocene peats from south west England: detecting mining impacts and atmospheric pollution. Water, Air, and Soil Pollution 100: 343–53.CrossRefGoogle Scholar

Copyright information

© Society of Wetland Scientists 2008

Authors and Affiliations

  • Nicholas J. Gotelli
    • 1
  • Paula J. Mouser
    • 2
  • Stephen P. Hudman
    • 1
  • Sergio E. Morales
    • 3
  • Donald S. Ross
    • 4
  • Aaron M. Ellison
    • 5
  1. 1.Department of BiologyUniversity of VermontBurlingtonUSA
  2. 2.Department of Civil and Environmental EngineeringUniversity of VermontBurlingtonUSA
  3. 3.Department of Microbiology and Molecular GeneticsUniversity of VermontBurlingtonUSA
  4. 4.Department of Plant and Soil ScienceUniversity of VermontBurlingtonUSA
  5. 5.Harvard ForestHarvard UniversityPetershamUSA

Personalised recommendations