Wetlands

, 28:336 | Cite as

Monitoring mangrove forest changes using remote sensing and GIS data with decision-tree learning

  • Kai Liu
  • Xia Li
  • Xun Shi
  • Shugong Wang
Article

Abstract

This paper presents a decision-tree method for identifying mangroves in the Pearl River Estuary using multi-temporal Landsat TM data and ancillary GIS data. Remote sensing can be used to obtain mangrove distribution information. However, serious confusion in mangrove classification using conventional methods can develop because some types of land cover (e.g., agricultural land and forests) have similar spectral behaviors and distribution features to mangroves. This paper develops a decisiontree learning method for integrating Landsat TM data and ancillary GIS data (e.g., DEM and proximity variables) to solve this problem. The analysis has demonstrated that this approach can produce superior mangrove classification results to using only imagery or ancillary data. Three temporal maps of mangroves in the Pearl River Estuary were obtained using this decision-tree method. Monitoring results indicated a rapid decline of mangrove forest area in recent decades because of intensified human activities.

Key Words

change detection DEM Landsat TM image Pearl River Estuary 

Literature Cited

  1. Adams, J. B., D. E. Sabol, V. Kapos, R. A. Filho, D. A. Roberts, M. O. Smith, and A. R. Gillespie. 1995. Classification of multispectral images based on fractions of endmembers: application to land-cover change in the Brazilian Amazon. Remote Sensing of Environment 52: 137–54.CrossRefGoogle Scholar
  2. Akira, H., M. Marguerite, and W. Roy. 2003. Hyperspectral image data for mapping wetland vegetation. Wetlands 23: 436–48.CrossRefGoogle Scholar
  3. Alongi, D. M. 2002. Present state and future of the world’s mangrove forests. Environmental Conservation 29: 331–49.CrossRefGoogle Scholar
  4. Berry, M. J. A. and G. Linoff. 1997. Data Mining Techniques for Marketing, Sales, and Customer Support. John Wiley & Sons, Inc., New York, NY, USA.Google Scholar
  5. Blasco, F., P. Saenger, and E. Janodet. 1996. Mangroves as indicators of coastal change. Catena 27: 167–78.CrossRefGoogle Scholar
  6. Breiman, L., J. H. Freidman, R. A. Olshen, and C. J. Stone. 1984. Classification and Regression Trees. Wadsworth, Inc., Belmont, CA, USA.Google Scholar
  7. Brian, G. L. and S. D. Timothy. 1996. A technique for mapping mangroves with Landsat TM satellite data and Geographic Information System. Estuarine, Coastal and Shelf Science 43: 373–81.CrossRefGoogle Scholar
  8. Campbell, J. B. 2002. Introduction to Remote Sensing, third edition. The Guilford Press, New York, NY, USA.Google Scholar
  9. Cohen, J. 1960. A coefficient of agreement for nominal scale. Educational and Psychological Measurement 20: 37–46.CrossRefGoogle Scholar
  10. Colstoun, E. C. B., M. H. Story, C. Thompson, K. Commisso, T. G. Smith, and J. R. Irons. 2003. National Park vegetation mapping using multitemporal Landsat 7 data and a decision tree classifier. Remote Sensing of Environment 85: 316–27.CrossRefGoogle Scholar
  11. Congalton, R. G. 1991. A review of assessing the accuracy of classification of remotely sensed data. Remote Sensing of Environment 37: 35–46.CrossRefGoogle Scholar
  12. Defries, R. S., M. Hansen, J. R. G. Townshend, and R. Sohlberg. 1998. Global land cover classifications at 8 km spatial resolution: the use of training data derived from Landsat imagery in decision tree classifiers. International Journal of Remote Sensing 19: 3141–68.CrossRefGoogle Scholar
  13. ERDAS. 1997. ERDAS Field Guide. ERDAS Inc., Atlanta, GA, USA.Google Scholar
  14. Franklin, J. 1993. Discrimination of tropical vegetation types using SPOT multispectral data. Geocarto International 2: 57–63.CrossRefGoogle Scholar
  15. Friedl, M. A. and C. Brodley. 1997. Decision tree classification of land cover from remotely sensed data. Remote Sensing of Environment 61: 399–409.CrossRefGoogle Scholar
  16. Friedl, M. A., C. E. Brodley, and A. H. Strahler. 1999. Maximizing land cover classification accuracies produced by decision trees at continental to global scales. IEEE Transactions on Geoscience and Remote Sensing 37: 969–77.CrossRefGoogle Scholar
  17. Fung, T. and E. LeDrew. 1988. The determination of optimal threshold levels for change detection using various accuracy indices. Photogrammetric Engineering and Remote Sensing 54: 1449–54.Google Scholar
  18. Gao, J. 1999. A comparatives study on spatial and spectral resolutions of satellite data in mapping mangrove forests. Internal Journal of Remote Sensing 20: 2823–33.CrossRefGoogle Scholar
  19. Garcia, P. R., J. L. Blanco, and D. Ocana. 1998. Mangrove vegetation assessment in the Santiago River Mouth Mexico, by means of supervised classification using Landsat TM imagery. Forest Ecology and Management 105: 217–29.CrossRefGoogle Scholar
  20. Green, E. P., C. D. Clark, P. J. Mumby, A. J. Edwards, and A. C. Ellis. 1998. Remote sensing techniques for mangrove mapping. International Journal of Remoter Sensing 19: 935–56.CrossRefGoogle Scholar
  21. Hansen, M., R. Dubayah, and R. DeFries. 1996. Classification trees: an alternative to traditional land cover classifiers. Internal Journal of Remote Sensing 17: 1075–81.CrossRefGoogle Scholar
  22. Hansen, M. and J. K. Schjoerring. 2003. Reflectance measurement of canopy biomass and nitrogen status in wheat crops using normalized difference vegetation indices and partial least squares regression. Remote Sensing of Environment 86: 542–53.CrossRefGoogle Scholar
  23. Harvey, K. R. and G. J. E. Hill. 2001. Vegetation mapping of a tropical freshwater swamp in the Nrothern Territory, Australia: a comparison of aerial photography, Landsat TM and SPOT satellite imagery. International Journal of Remoter Sensing 22: 2911–25.CrossRefGoogle Scholar
  24. Hirano, A., M. Madden, and R. Welch. 2003. Hyperspectral image data for mapping wetland vegetation. WETLANDS 23: 436–48.CrossRefGoogle Scholar
  25. Hord, R. M. and W. Brooner. 1976. Land use map accuracy criteria. Photogrammetric Engineering and Remote Sensing 42: 671–77.Google Scholar
  26. Horssen, P. W. V., E. J. Pebesma, and P. P. Schot. 2002. Uncertainties in spatially aggregated predictions from a logistic regression model. Ecological Modelling 154: 93–101.CrossRefGoogle Scholar
  27. Huang, X. Q. and J. R. Jensen. 1997. A machine-learning approach to automated knowledge-base building for remote sensing image analysis with GIS data. Photogrammetric Engineering and Remote Sensing 63: 1185–94.Google Scholar
  28. Jensen, J. R. 2005. Introductory Digital Image Processing: A Remote Sensing Perspective, third edition. Upper Saddle River, Prentice Hall, Inc., NJ, USA.Google Scholar
  29. Jensen, J. R., H. Lin, Y. Yang, E. Ramsey, B. A. Davis, and C. W. Thoemke. 1991. The measurement of mangrove characteristics in Southwest Florida using SPOT multispectral data. Geocarto International 2: 13–21.CrossRefGoogle Scholar
  30. Jensen, J. R., E. Ramsey, H. E. Mackey, Jr., and M. E. Hodgson. 1988. Thermal modeling of heat dissipation in the Pen Branch Delta using thermal infrared imagery. Geocarto International: An Interdisciplinary Journal of Remote Sensing and GIS 4: 17–28.Google Scholar
  31. Kovacs, J. M. 1999. Assessing mangrove use at the local scale. Landscape and Urban Planning 43: 201–08.CrossRefGoogle Scholar
  32. Kovacs, J. M., J. Wang, and M. Blanco. 2001. Mapping mangrove disturbances using multi-data Landsat imagery. Environmental Management 27: 763–76.CrossRefPubMedGoogle Scholar
  33. Kovacs, J. M., J. Wang, and F. F. Verdugo. 2005. Mapping mangrove leaf area index at the species level using IKONOS and LAI-2000 sensor for the Agua Brava Lagoon, Mexican Pacific. Estuarine Coastal and Shelf Science 62: 377–84.CrossRefGoogle Scholar
  34. Li, J. L., J. K. Du, and Y. S. Zhang. 2004. Land cover change monitoring in shaoxing by Radiometric calibrated TM data. Remote Sensing Information 78: 22–25. (In Chinese).Google Scholar
  35. Li, S. H., H. Wang, and X. W. Jiang. 2002. Application of CBERS-1 CCD in the mangrove Remote Sensing Survey. Marine Science Bulletin 22: 30–35. (In Chinese).Google Scholar
  36. Li, X. and A. G. Yeh. 2004. Data mining of cellular automata’s transition rules. Internal Journal of Geographical Information Science 18: 723–44.CrossRefGoogle Scholar
  37. Linneweber, V. and L. D. de Lacerda. 2002. Mangrove Ecosystems: Function and Management. Springer-Verlag, Berlin, Germany.Google Scholar
  38. Mather, P. M. 2004. Computer Processing of Remotely-Sensed Images: An Introduction, third edition. John Wiley & Sons, Inc., Chichester, England.Google Scholar
  39. Mingers, J. 1989. An empirical comparison of pruning methods for decision tree induction. Machine Learning 4: 227–43.CrossRefGoogle Scholar
  40. Mulholland, M., D. B. Hibbert, P. R. Haddad, and C. Sammut. 1995. Application of the C4.5 classifiers to building an expert system for ion chromatography. Chemometrics and Intelligent Laboratory System 27: 95–104.CrossRefGoogle Scholar
  41. Munyati, C. 2000. Wetland change detection on the Kafue Flats, Zambia, by classification of a multitemporal remote sensing image dataset. International Journal of Remote Sensing 21: 1787–1806.CrossRefGoogle Scholar
  42. Murray, M. R., S. A. Zisman, P. A. Furley, D. M. Munro, J. Gibson, J. Ratter, S. Bridgewater, C. D. Minty, and C. J. Place. 2003. The mangroves of Belize Part 1. distribution, composition and classification. Forest Ecology and Management 174: 265–79.CrossRefGoogle Scholar
  43. Olthof, I., D. Pouliot, R. Fernandes, and R. Latifovic. 2005. Landsat-7 ETM+ radiometric normalization comparison for northern mapping applications. Remote Sensing of Environment 95: 388–98.CrossRefGoogle Scholar
  44. Pasqualini, V., J. Iltis, N. Dessay, M. Lontier, O. Guelorget, and L. Polidori. 1999. Mangrove mapping in North-Western Madagascar using SPOT-XS and SIR-C radar data. Hydrobiologia 413: 127–33.CrossRefGoogle Scholar
  45. Pedro, R. G., L. B. Jorge, and O. Daniel. 1998. Mangrove vegetation asseddment in the Santiago River Mouth, Mexico, by means of supervised classification using Landsat TM imagery. Forest Ecology and Management 105: 217–29.CrossRefGoogle Scholar
  46. Proisy, C., E. Mougin, F. Fromard, and M. A. Karam. 2000. Interpretation of polarimetric radar signatures of mangrove forests. Remote Sensing of Environment 71: 56–66.CrossRefGoogle Scholar
  47. Quinlan, J. R. 1986. Induction of decision trees. Machine Learning 1: 81–106.Google Scholar
  48. Quinlan, J. R. 1993. C4.5: Programs for Machine Learning. Morgan Kaufmann Publishers, Inc., San Mateo, CA, USA.Google Scholar
  49. Ramsey, E. and J. R. Jensen. 1996. Remote sensing of mangrove wetlands: relating canopy spectra to site-specific data. Photogrammetric Engineering and Remote Sensing 62: 939–48.Google Scholar
  50. Richards, J. A. and X. P. Jia. 2006. Remote Sensing Digital Image Analysis. Springer-Verlag, Heidelberg, Germany.Google Scholar
  51. Roder, A., T. Kuemmerle, and J. Hill. 2005. Extension of retrospective datasets using multiple sensors. an approach to radiometric intercalibration of Landsat TM and MSS data. Remote Sensing of Environment 95: 195–210.CrossRefGoogle Scholar
  52. Rutchey, K. and L. VilCheck. 1994. Development of an Everglades vegetation map using a SPOT image and the Global Positioning System. Photogrammetric Engineering and Remote Sensing 60: 767–75.Google Scholar
  53. Sader, S. A., A. Douglas, and W. S. Liou. 1995. Accuracy of Landsat-TM and GIS rule-based methods for forest wetland classification in Maine. Remote Sensing of Environment 53: 133–44.CrossRefGoogle Scholar
  54. Sheridan, P. and C. Hays. 2003. Are mangroves nursery habitat for transient fishes and decapods? Wetlands 23: 449–58.CrossRefGoogle Scholar
  55. Song, C., C. E. Woodcock, K. C. Seto, M. P. Lenney, and S. A. Macomber. 2001. Classification and change detection using Landsat TM data: when and how to correct atmospheric effect? Remote Sensing of Environment 75: 230–44.CrossRefGoogle Scholar
  56. Swain, P. H. and H. Hauska. 1977. The decision tree classifier: design and potential. IEEE Transactions on Geoscience and Remote Sensing 37: 969–77.Google Scholar
  57. Twilley, R. R., S. C. Snedaker, A. Y. Arancibia, and E. Medina. 1996. Biodiversity and ecosystem in tropical estuaries: perspectives of mangrove ecosystem. p. 327–70. In H. A. Moonye, J. H. Cushman, E. Medina, O. E. Sala, and E. D. Schulze (eds.) Functional Roles of Biodiversity: A Global Perspective. John Wiley & Sons, Inc., New York, NY, USA.Google Scholar
  58. Vaiphasa, C., S. K. Andrew, and F. B. Willem. 2006. A postclassifier for mangrove mapping using ecological data. Photogrammetry and Remote Sensing 61: 1–10.CrossRefGoogle Scholar
  59. Vanina, P., J. Iltis, N. Dessay, M. Lointier, O. Guelorget, and L. Polidori. 1999. Mangrove mapping in north-western Madagascar suing SPOT-XS and SIR-C radar data. Hydrobiologia 413: 127–33.CrossRefGoogle Scholar
  60. Vogelmann, J. E., D. Helder, R. Morfitt, M. J. Choate, J. W. Merchant, and H. Bulley. 2001. Effects of Landsat 5 Thematic Mapper and Landsat 7 Enhanced Thematic Mapper Plus radiometric and geometric calibrations and corrections on landscape characterization. Remote Sensing of Environment 78: 55–70.CrossRefGoogle Scholar
  61. Wang, L., W. P. Sousa, P. Gong, and G. S. Biging. 2004. Comparison of IKONOS and QuickBird images for mapping mangrove species on the Caribbean coast of Panama. Remote Sensing of Environment 91: 432–40.CrossRefGoogle Scholar
  62. Wang, S. G. and X. G. Chen. 1998. The status of coastal wetlands and their protection in Guangdong province. Environmental Sciences of Chongqing 20: 4–11. (In Chinese).Google Scholar
  63. Xu, M., W. Pakorn, K. V. Pramod, and K. A. Manoj. 2005. Decision tree regression for soft classification of remote sensing data. Remote Sensing of Environment 97: 322–36.CrossRefGoogle Scholar

Copyright information

© The Society of Wetland Scientists 2008

Authors and Affiliations

  • Kai Liu
    • 1
    • 5
    • 6
  • Xia Li
    • 2
  • Xun Shi
    • 3
  • Shugong Wang
    • 4
  1. 1.Guangzhou Institute of GeochemistryChinese Academy of SciencesGuangzhouP.R. China
  2. 2.School of Geography and PlanningSun Yat-sen UniversityGuangzhouP.R. China
  3. 3.Department of GeographyDartmouth CollegeHanoverUSA
  4. 4.Institute of Environmental ScienceSun Yat-sen UniversityGuangzhouP.R. China
  5. 5.Guangzhou Institute of GeographyGuangzhouP.R. China
  6. 6.Graduate School of Chinese Academy of SciencesBeijingP.R. China

Personalised recommendations