Wetlands

, Volume 27, Issue 3, pp 702–718 | Cite as

Floral and faunal differences between fragmented and unfragmented bahamian tidal creeks

  • Lori Valentine-Rose
  • Julia A. Cherry
  • J. Jacob Culp
  • Kathryn E. Perez
  • Jeff B. Pollock
  • D. Albrey Arrington
  • Craig A. Layman
Article

Abstract

We characterized biota in two unfragmented and two fragmented mangrove-lined tidal creeks on Andros Island, Bahamas, in May 2003, to examine particular effects of tidal creek fragmentation by road blockage. Total number of plant and fish species was significantly different between fragmented and unfragmented creeks, and species composition was significantly different both between unfragmented and fragmented creeks, and between downstream and upstream areas within fragmented creeks. More reef-associated, economically important and ecologically critical plant, macroinvertebrate, and fish species were observed in unfragmented tidal creeks, while fragmented creeks contained: 1) plant species typical of higher elevation estuarine habitat, 2) terrestrial and aquatic macroinvertebrate species typical of upland habitats, 3) macroinvertebrate species adapted to low flow, and 4) temperature- and salinetolerant macroinvertebrate and fish species. Furthermore, fragmented tidal creeks had different size distributions of common organisms, e.g., smaller sizes of two economically important fish species (Lutjanidae). This study suggests that fragmentation of tidal creeks and the subsequent loss of hydrologic connectivity influences the diversity and composition of aquatic flora and fauna, and may considerably inhibit nursery function and other ecosystem services provided by these coastal systems. These data also provide a baseline with which community- and ecosystem-level responses to restoration of hydrologic connectivity in fragmented tidal creeks will be assessed.

Key Words

back reef community structure estuary fragmentation hydrologic connectivity mangrove nursery road-crossing tidal flow underwater visual census 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature Cited

  1. Abbott, R. T. 1954. American Seashells. Van Nostrand, Inc., New York, NY, USA.Google Scholar
  2. Acosta, C. A. and M. J. Butler IV. 1997. Role of mangrove habitat as a nursery for juvenile spiny lobster, Panulirus argus, in Belize. Marine and Freshwater Research 48: 721–27.CrossRefGoogle Scholar
  3. Adams, A. J., C. P. Dahlgren, G. T. Kellison, M. S. Kendall, C. A. Layman, J. A. Ley, I. Nagelkerken, and J. E. Serafy. 2006. Nursery function of tropical back-reef systems. Marine Ecology Progress Series 318: 287–301.CrossRefGoogle Scholar
  4. Adams, A. J. and J. P. Ebersole. 2002. Use of back-reef and lagoon habitats by coral reef fishes. Marine Ecology Progress Series 228: 213–26.CrossRefGoogle Scholar
  5. Adams, A. J. and J. P. Ebersole. 2004. Processes influencing recruitment inferred from distributions of coral reef fishes. Bulletin of Marine Science 75: 153–74.Google Scholar
  6. Almany, G. R. 2004. Differential effects of habitat complexity, predators, and competitors on abundance of juvenile and adult coral reef fishes. Oecologia 141: 105–13.CrossRefPubMedGoogle Scholar
  7. Andrews, E. A. 1940. The snail, Neritina virginea, L., in a changing salt pond. Ecology 21: 335–46.CrossRefGoogle Scholar
  8. Beukers, J. S. and G. P. Jones. 1998. Habitat complexity modifies the impact of piscivores on a coral reef fish population. Oecologia 114: 50–59.CrossRefGoogle Scholar
  9. Boesch, D. F. and R. R. Turner. 1984. Dependence of fishery species on salt marshes: the role of food and refuge. Estuaries 7: 460–68.CrossRefGoogle Scholar
  10. Booth, D. J. and G. A. Beretta. 2004. Influence of recruit condition on food competition and predation risk in a coral reef fish. Oecologia 140: 289–94.CrossRefPubMedGoogle Scholar
  11. Boto, K. G. and J. T. Wellington. 1983. Phosphorus and nitrogen nutritional status of a northern Australian mangrove forest. Marine Ecology Progress Series 11: 63–69.CrossRefGoogle Scholar
  12. Bray, J. R. and J. C. Curtis. 1957. An ordination of the upland forest communities of southern Wisconsin. Ecological Monographs 27: 325–49.CrossRefGoogle Scholar
  13. Brock, R. E. 1954. A preliminary report on a method of estimating reef fish populations. Journal of Wildlife Management 18: 297–308.CrossRefGoogle Scholar
  14. Buchan, K. C. 2000. The Bahamas. Marine Pollution Bulletin 41: 94–111.CrossRefGoogle Scholar
  15. Burdick, D. M., M. Dionne, R. M. J. Boumans, and F. T. Short. 1997. Ecological responses to tidal restorations of two northern New Englands salt marshes. Wetland Ecological Management 4: 129–44.CrossRefGoogle Scholar
  16. Carr, M. H. 1994. Effects of macroalgal dynamics on recruitment of a temperate reef fish. Ecology 75: 1320–33.CrossRefGoogle Scholar
  17. Clarke, K. R. and R. M. Warwick. 1994. Similarity-based testing for community pattern: the 2-way layout with no replication. Marine Biology 118: 167–76.CrossRefGoogle Scholar
  18. Cocheret de la Moriniere, E., I. Nagelkerken, H. van der Meij, and G. van der Velde. 2003. What attracts juvenile coral reef fish to mangroves: habitat complexity or shade? Marine Biology 144: 139–45.CrossRefGoogle Scholar
  19. Correll, D. S. and H. B. Correll. 1982. Flora of the Bahamas Archipelago: Including the Turks and Caicos Islands. J. Cramer, Stuttgart, Germany.Google Scholar
  20. Dahlgren, C. P. and D. B. Eggleston. 2000. Ecological processes underlying ontogenetic habitat shifts in coral reef fish. Ecology 81: 2227–40.CrossRefGoogle Scholar
  21. Dahlgren, C. P., G. T. Kellison, A. J. Adams, B. M. Gillanders, M. S. Kendall, C. A. Layman, J. A. Ley, I. Nagelkerken, and J. E. Serafy. 2006. Marine nurseries and effective juvenile habitats: concepts and applications. Marine Ecology Progress Series 312: 291–95.CrossRefGoogle Scholar
  22. Dahlgren, C. P. and J. Marr. 2004. Back reef systems: important but overlooked components of tropical marine ecosystems. Bulletin of Marine Science 75: 145–52.Google Scholar
  23. Dorenbosch, M., M. G. G. Grol, M. J. A. Christianen, I. Nagelkerken, and G. van der Velde. 2005. Indo-Pacific seagrass beds and mangroves contribute to fish density and diversity on adjacent coral reefs. Marine Ecology Progress Series 302: 63–76.CrossRefGoogle Scholar
  24. Edgar, G. J., N. S. Barrett, and P. R. Last. 1999. The distribution of macroinvertebrates and fishes in Tasmanian estuaries. Journal of Biogeography 26: 1169–89.CrossRefGoogle Scholar
  25. Eertman, R. H. M., B. A. Kornman, E. Stikvoort, and H. Verbeek. 2002. Restoration of the Sieperda Tidal Marsh in the Sheldt Estuary, The Netherlands. Restoration Ecology 10: 438–49.CrossRefGoogle Scholar
  26. Feller, I. C., K. L. McKee, D. F. Whigham, and J. P. O’Neill. 2002. Nitrogen vs. phosphorus limitation across an ecotonal gradient in a mangrove forest. Biogeochemistry 62: 145–75.CrossRefGoogle Scholar
  27. Fisher, R. and D. R. Bellwood. 2001. Effects of feeding on the sustained swimming abilities of late-stage larval Amphiprion melanopus. Coral Reefs 20: 151–54.CrossRefGoogle Scholar
  28. Gaines, S. and J. Roughgarden. 1985. Larval settlement rate: a leading determinant of structure in an ecological community of the marine intertidal zone. Proceedings of the National Academy of Science 82: 3707–11.CrossRefGoogle Scholar
  29. Grabowksi, J. H. 2004. Habitat complexity disrupts predatorprey interactions but not the trophic cascade on oyster reefs. Ecology 85: 995–1004.CrossRefGoogle Scholar
  30. Grabowski, J. H. and S. P. Powers. 2004. Habitat complexity mitigates trophic transfer on oyster reefs. Marine Ecology Progress Series 277: 291–95.CrossRefGoogle Scholar
  31. Greenwood, M. F. D. and A. S. Hill. 2003. Temporal, spatial, and tidal influences on benthic and demersal fish abundance in the Forth estuary. Estuarine, Coastal, and Shelf Science 58: 211–25.CrossRefGoogle Scholar
  32. Gust, N. 2002. Scarid biomass on the northern Great Barrier Reef: the influence of exposure, depth, and substrata. Environmental Biology of Fishes 64: 353–66.CrossRefGoogle Scholar
  33. Human, P. and N. Deloach. 2002. Reef Fish Identification: Florida Caribbean Bahamas. New World Publications, Inc., Jacksonville, Florida, USA.Google Scholar
  34. Jaafar, Z., S. Hajisamae, L. M. Chou, and Y. Yatiman. 2004. Community structure of coastal fishes in relation to heavily impacted human modified habitats. Hydrobiologia 511: 113–23.CrossRefGoogle Scholar
  35. Jiménez, J. and K. Sauter. 1991. Structure and dynamics of mangrove forests along a flooding gradient. Estuaries 14: 49–56.CrossRefGoogle Scholar
  36. Jordan, F., K. J. Babbitt, and C. C. McIvor. 1998. Seasonal variation in habitat use by marsh fishes. Ecology of Freshwater Fishes 7: 159–66.CrossRefGoogle Scholar
  37. Kaplan, E. H. 1988. Southeastern and Caribbean Seashores. Peterson Field Guides, Houghton-Mifflin, New York, NY, USA.Google Scholar
  38. Kieckbusch, D. K., M. S. Koch, J. E. Serafy, and W. T. Anderson. 2004. Trophic linkages among primary producers and consumers in fringing mangroves of subtropical lagoons. Bulletin of Marine Science 74: 271–85.Google Scholar
  39. Koch, M. S. 1997. Rhizophora mangle L. seedling development into the sapling stage across resource and stress gradients in subtropical Florida. Biotropica 29: 427–39.CrossRefGoogle Scholar
  40. Layman, C. A., D. A. Arrington, and M. A. Blackwell. 2004a. Community-based restoration of an Andros Island (Bahamas) estuary. Ecological Restoration 23: 58–59.Google Scholar
  41. Layman, C. A., D. A. Arrington, R. B. Langerhans, and B. R. Silliman. 2004b. Degree of fragmentation affects fish assemblage structure in Andros Island (Bahamas) estuaries. Caribbean Journal of Science 40: 234–44.Google Scholar
  42. Layman, C. A. and B. R. Silliman. 2002. Preliminary survey and diet analysis of juvenile fishes of an estuarine estuary on Andros Island, Bahamas. Bulletin of Marine Science 70: 199–210.Google Scholar
  43. Layman, C. A., D. E. Smith, and J. D. Herod. 2000. Seasonally varying importance of abiotic and biotic factors in marsh-pond fish communities. Marine Ecology Progress Series 207: 155–69.CrossRefGoogle Scholar
  44. Littler, D. S., M. M. Littler, K. E. Bucher, and J. N. Norris. 1989. Marine Plants of the Caribbean. Smithsonian Institution Press, Washington, DC, USA.Google Scholar
  45. Lugo, A. E. 1990. Fringe wetlands. In A. E. Lugo, M. M. Brinson, and S. Brown (eds.) Forested Wetlands: Ecosystems of the World. Elsevier, Amsterdam, The Netherlands.Google Scholar
  46. Lugo, A. E. and S. C. Snedaker. 1974. The ecology of mangroves. Annual Review of Ecology and Systematics 5: 39–64.CrossRefGoogle Scholar
  47. Lyons, K. G., C. A. Brigham, B. H. Traut, and M. W. Schwartz. 2005. Rare species and ecosystem functioning. Conservation Biology 19: 1019–24.CrossRefGoogle Scholar
  48. Lyons, K. G. and M. W. Schwartz. 2001. Rare species loss alters ecosystem function-invasion resistance. Ecology Letters 4: 1–8.CrossRefGoogle Scholar
  49. Mallin, M. A. and A. J. Lewitus. 2004. The importance of tidal creek ecosystems. Journal of Experimental Marine Ecology 298: 145–49.CrossRefGoogle Scholar
  50. Manson, F. J., N. R. Loneragan, G. A. Skilleter, and S. R. Phinn. 2005. An evaluation of the evidence for linkages between mangroves and fisheries: a synthesis of the literature and identification of research directions. Oceanography and Marine Biology: an Annual Review 43: 485–515.Google Scholar
  51. Marx, J. M. and W. F. Herrnkind. 1986. Species profiles: life histories and environmental requirements of coastal fishes and macromacroinvertebrates. (South Florida) — spiny lobster. U.S. Fish and Wildlife Service, Office of Biological Representatives, 82 (11.61). US Army Corps of Engineers, TR-EL-82-4.Google Scholar
  52. McKee, K. L. 1993. Soil physicochemical patterns and mangrove species distribution: reciprocal effects. Journal of Ecology 81: 477–87.CrossRefGoogle Scholar
  53. McKee, K. L. 1995. Seedling recruitment patterns in a Belizian mangrove forest: effects of establishment ability and physicochemical factors. Oecologia 101: 448–60.CrossRefGoogle Scholar
  54. McKee, K. L. and P. L. Faulkner. 2000. Restoration of biogeochemical function in mangrove forests. Restoration Ecology 8: 247–59.CrossRefGoogle Scholar
  55. Metcalf, M. M. 1904. Neritina virginea variety minor. The American Naturalist 38: 564–69.CrossRefGoogle Scholar
  56. Morrison, M. A., M. P. Francis, B. W. Hartill, and D. M. Parkinson. 2002. Diurnal and tidal variation in the abundance of the fish fauna of a temperate tidal mudflat. Estuarine, Coastal, and Shelf Science 54: 793–807.CrossRefGoogle Scholar
  57. Mumby, P. J., A. J. Edwards, J. E. Aria-Gonzalez, K. C. Lindeman, and P. G. Blackwell. 2004. Mangroves enhance the biomass of coral reef fish communities in the Caribbean. Nature 427: 533–36.CrossRefPubMedGoogle Scholar
  58. Nagelkerken, I., M. Dorenbosch, W. C. E. P. Verberk, E. Cocheret de la Moriniere, and G. van der Velde. 2000. Importance of shallow-water biotopes of a Caribbean bay for juvenile coral reef fishes: patterns in biotope association, community structure and spatial distribution. Marine Ecology Progress Series 202: 175–92.CrossRefGoogle Scholar
  59. Nagelkerken, I., S. Kleijnen, T. Klop, R. A. C. J. van den Brand, E. Cocheret de la Moriniere, and G. van der Velde. 2001. Dependence of Caribbean reef fishes on mangroves and seagrass beds as nursery habitats: a comparison of fish faunas between bays with and without mangroves/seagrass beds. Marine Ecology Progress Series 214: 225–35.CrossRefGoogle Scholar
  60. Nagelkerken, I., C. M. Roberts, G. van der Velde, M. Dorenbosch, M. C. van Riel, E. Cocheret de la Moriniere, and P. H. Nienhuis. 2002. How important are mangroves and seagrass beds for coral-reef fish? the nursery hypothesis tested on an island scale. Marine Ecology Progress Series 224: 299–305.CrossRefGoogle Scholar
  61. Nemerson, D. M. and K. W. Able. 2004. Spatial patterns in diet and distribution of juveniles of four fish species in Delaware Bay march creeks: factors influencing fish abundance. Marine Ecology Progress Series 276: 249–62.CrossRefGoogle Scholar
  62. Pool, D. J., S. C. Snedaker, and A. E. Lugo. 1977. Structure of mangrove forests in Florida, Puerto Rico, Mexico, and Costa Rica. Biotropica 9: 195–212.CrossRefGoogle Scholar
  63. Pringle, C. M. 2001. Hydrologic connectivity and the management of biological reserves: a global perspective. Ecological Applications 11: 981–98.CrossRefGoogle Scholar
  64. Raposa, K. 2002. Early responses of fishes and crustaceans to restoration of a tidally restricted New England salt marsh. Restoration Ecology 10: 665–76.CrossRefGoogle Scholar
  65. Raposa, K. B. and C. T. Roman. 2003. Using gradients in tidal restriction to evaluate nekton community responses to salt marsh restoration. Estuaries 26: 98–105.CrossRefGoogle Scholar
  66. Ray, G. C. 2005. Connectivities of estuarine fishes to the coastal realm. Estuarine, Coastal, and Shelf Science 64: 18–32.CrossRefGoogle Scholar
  67. Redfern, C. 2001. Bahamian Seashells: A Thousand Species from Abaco, Bahamas. BahamianSeashells.com, Inc., Boca Raton, Florida, USA.Google Scholar
  68. Robins, C. R. and G. C. Ray. 1986. Peterson Field Guides: Atlantic Coast Fishes. Houghton Mifflin Company, Boston, MA, USA.Google Scholar
  69. Roman, C. T., W. A. Niering, and R. S. Warren. 1984. Salt marsh vegetation change in response to tidal restriction. Environmental Management 8: 141–50.CrossRefGoogle Scholar
  70. Roman, C. T., K. B. Raposa, S. C. Adamowicz, M. J. James-Pirri, and J. G. Catena. 2002. Quantifying vegetation and nekton response to tidal restoration of a New England salt marsh. Restoration Ecology 10: 450–60.CrossRefGoogle Scholar
  71. Sasekumar, A., V. C. Chong, M. U. Leh, and R. D’Cruz. 1992. Mangroves as a habitat for fish and prawns. Hydrobiologia 247: 195–207.CrossRefGoogle Scholar
  72. Sheaves, M. 2005. Nature and consequences of biological connectivity in mangrove systems. Marine Ecology Progress Series 302: 293–305.CrossRefGoogle Scholar
  73. Stillman, J. H. 2002. Causes and consequences of thermal tolerance limits in rocky intertidal porcelain crabs, genus Petrolisthes. Integrative and Comparative Biology 42: 790–96.CrossRefGoogle Scholar
  74. Stillman, J. H. and G. N. Somero. 2000. A comparative analysis of the upper thermal tolerance limits of Eastern Pacific porcelain crabs, genus Petrolisthes: influences of latitude, vertical zonation, acclimation, and phylogeny. Physiological and Biochemical Zoology 73: 200–08.CrossRefPubMedGoogle Scholar
  75. Stoner, A. W. 1988. A nursery ground for four tropical Penaeus species: Laguna Joyuda, Puerto Rico. Marine Ecology Progress Series 42: 133–41.CrossRefGoogle Scholar
  76. Stoner, A. W. 2003. What constitutes essential nursery habitat for a marine species? a case study of habitat form and function for queen conch. Marine Ecology Progress Series 257: 275–89.CrossRefGoogle Scholar
  77. Stoner, A. W., N. Mehta, and M. Ray-Culp. 1998. Mesoscale distribution patterns of queen conch (Strombus gigas linne) in Exuma Sound, Bahamas: links in recruitment from larvae to fishery yields. Journal of Shellfish Research 17: 955–69.Google Scholar
  78. Sullivan-Sealey, K., B. Brunnick, S. Harzen, C. Luton, and V. Nero, et al. 2002. An Ecoregional Plan for the Bahamian Archipelago. Taras Oceanographic Foundation, Jupiter, FL, USA.Google Scholar
  79. Tanner, C. D., J. R. Cordell, J. Rubey, and L. M. Tear. 2002. Restoration of freshwater intertidal habitat functions at Spencer Island, Everett, Washington. Restoration Ecology 10: 564–76.CrossRefGoogle Scholar
  80. Valentine-Rose, L., C. A. Layman, D. A. Arrington, and A. L. Rypel. 2007. Habitat fragmentation decreases fish secondary production in Bahamian tidal creeks. Bulletin of Marine Science 80: 863–78.Google Scholar
  81. Walker, B., A. Kinzig, and J. Langridge. 1999. Plant attribute diversity, resilience, and ecosystem function: the nature and significance of dominant and minor species. Ecosystems 2: 95–113.CrossRefGoogle Scholar
  82. Warren, R. S., P. E. Fell, R. Rozsa, A. H. Brawley, A. C. Orsted, E. T. Olson, V. Swamy, and W. A. Niering. 2002. Salt marsh restoration in Connecticut: 20 years of science and management. Restoration Ecology 10: 497–513.CrossRefGoogle Scholar
  83. Wiedenmayer, F. 1977. Shallow-water Sponges of the Western Bahamas. Birkhauser, Stuttgart, Germany.Google Scholar
  84. Wuenschel, M. J., A. R. Jugovich, and J. A. Hare. 2004. Effect of temperature and salinity on the energetics of juvenile gray snapper: implications for nursery habitat value. Journal of Experimental Marine Biology and Ecology 312: 333–47.CrossRefGoogle Scholar
  85. Wuenschel, M. J., A. R. Jugovich, and J. A. Hare. 2005. Metabolic response of juvenile gray snapper to temperature and salinity: physiological cost of different environments. Journal of Experimental Marine Biology and Ecology 321: 145–54.CrossRefGoogle Scholar
  86. Yachi, S. and M. Loreau. 1999. Biodiversity and ecosystem productivity in a fluctuating environment: the insurance hypothesis. Proceedings of the National Academy of Science 96: 1463–68.CrossRefGoogle Scholar

Copyright information

© Society of Wetland Scientists 2007

Authors and Affiliations

  • Lori Valentine-Rose
    • 1
  • Julia A. Cherry
    • 1
    • 2
  • J. Jacob Culp
    • 1
    • 3
  • Kathryn E. Perez
    • 1
    • 4
  • Jeff B. Pollock
    • 1
  • D. Albrey Arrington
    • 1
    • 5
  • Craig A. Layman
    • 6
  1. 1.Department of Biological SciencesUniversity of AlabamaTuscaloosaUSA
  2. 2.Department of New CollegeUniversity of AlabamaTuscaloosaUSA
  3. 3.Kentucky Department of Fish and Wildlife ResourcesFrankfortUSA
  4. 4.Department of BiologyUNC-Chapel Hill and Duke UniversityDurhamUSA
  5. 5.Director of Water ResourcesLoxahatchee River DistrictJupiterUSA
  6. 6.Marine Science Program Department of Biological SciencesFlorida International UniversityNorth MiamiUSA

Personalised recommendations