, Volume 26, Issue 4, pp 928–938 | Cite as

Low predictability in the dynamics of shallow lakes: Implications for their management and restoration

  • Inmaculada de Vicente
  • Enrique Moreno-Ostos
  • Victoria Amores
  • Francisco Rueda
  • Luis Cruz-Pizarro


This study was conducted in two eutrophic shallow lakes (Lake Honda LH and Lake Nueva LN) that share geographic proximity but have contrasting hydrology, meteorology, biogeochemistry, and geomorphology. Our objective was to explore the inter-annual, seasonal, and daily variability in selected biological, physical, and chemical variables of these two systems. Although the study lakes demonstrated a notable inter-annual and seasonal variation in nutrient concentrations, water transparency was the only variable that was consistently more variable in LH than LN. The reason for the greater temporal variability in water transparency of LH is its major susceptibility to wind and rain events. The impact of wind events in this lake is favored by its shallowness and by its silty surface sediment; the high ratio of catchment area to lake area is responsible for the relatively higher susceptibility of LH to rain events than LN. By contrast, in the younger and deeper LN, ground-water discharge buffers certain water chemistry parameters such as conductivity, turbidity, and alkalinity. Interestingly, differences in turbidity and ground-water discharge do not seem to affect the variability in nutrient concentrations, which was similar between the lakes, although these factors may explain differences between the lakes in nutrient concentrations. This paper reveals that the unpredictability and frequency of events in Mediterranean aquatic ecosystems makes it necessary to increase data collection frequency to obtain more accurate simulations in water quality models.

Key Words

shallow lakes temporal variability restoration 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature Cited

  1. APHA. 1995. Standard Methods for Examination of Water and Wastewater, nineteenth edition. APHA-AWWA-WPCF, Washington, DC, USA.Google Scholar
  2. Barica, J. 1980. Why hypertrophic ecosystems? p. 1–3. In J. Barica and L. R. Mur (eds.) Hypertrophic Ecosystems. Development in Hydrobiology 2. Dr. W. Junk, The Hague, The Netherlands.Google Scholar
  3. Carrillo, P., P. Sánchez-Castillo, L. Cruz-Pizarro, and R. Morales. 1996. Cambios cíclicos y tendencias a largo plazo en la salinización de ecosistemas fluctuantes (Albuferas de Adra). Evidencias de eutrofización y contaminación. Limnética 12: 59–65.Google Scholar
  4. Catalán, J. and E. J. Fee. 1994. Interannual variability in limnic ecosystems: origin, patterns and predictability. p. 81–97. In R. Margalef (ed.) Limnology Now: a Paradigm of Planetary Problems. Elsevier, Amsterdam, The Netherlands.Google Scholar
  5. Cruz-Pizarro, L., M. Argaiz, I. Garzón, and J. López. 1992. Batimetría de las lagunas de la Albufera de Adra. Informe técnico. Water Research Institute, University of Granada, Granada, Spain.Google Scholar
  6. Cruz-Pizarro, L., V. Amores, D. Fabián, I. de Vicente, I. Rodríguez-París, K. El Mabrouki, M. Rodríguez, and S. L. Rodrígues da Silva. 2002. La Eutrofización de las Albuferas de Adra (Almería). p. 77–96. In J. C. Nevado and M. Paracuellos (eds.) Agricultura y Medio Ambiente en el entorno de las Albuferas de Adra. Consejería de Medio Ambiente, Almería, Spain.Google Scholar
  7. Cruz-Pizarro, L., I. de Vicente, E. Moreno-Ostos, V. Amores, and K. El Mabrouki. 2003. Estudios de diagnóstico y viabilidad en el control de la eutrofización de las lagunas de la Albufera de Adra (Almería). Limnetica 22: 135–154.Google Scholar
  8. de Jonge, V. N., M. Elliot, and E. Orive. 2002. Causes, historical development, effects and future challenges of a common environmental problem: eutrophication. Hydrobiologia 475/476: 1–19.CrossRefGoogle Scholar
  9. de Vicente, I. 2004. Intercambio de nutrientes en la interfase agua-sedimento de dos lagunas costeras de elevado nivel trófico: la Albufera de Adra (Almería). Ph.D. Dissertation. University of Granada, Granada, Spain.Google Scholar
  10. de Vicente, I., L. Serrano, V. Amores, V. Clavero, and L. Cruz-Pizarro. 2003. Sediment phosphate fractionation and interstitial water phosphate concentration in two coastal lagoons (Albuferas de Adra, SE Spain). Hydrobiologia 492: 95–105.CrossRefGoogle Scholar
  11. de Vicente, I. and L. Cruz-Pizarro. 2003. Estudio de la carga externa de fósforo y aplicación de modelos empíricos de eutrofización en las lagunas de la Albufera de Adra (Almería). Limnetica 22: 165–181.Google Scholar
  12. Dokulil, M. T. and K. Teubner. 2003. Eutrophication and restoration of shallow lakesthe concept of stable equilibria revisited. Hydrobiologia 506/509: 29–35.CrossRefGoogle Scholar
  13. Eadie, J., J. W. Budd, M. H. Bundy, W. Gardner, J. Cotner, and P. J. Laurentyeu. 2002. A model study of the coupled biological and physical dynamics in Lake Michigan. Ecological Modelling 12: 145–168.Google Scholar
  14. Eser, P. and M. R. Rosen. 1999. The influence of groundwater hydrology and stratigraphy on the hydrochemistry of Stump Bay, South Taupo Wetland. New Zealand. Journal of Hydrology 220: 27–47.CrossRefGoogle Scholar
  15. Fabian, J. D. 2002. Diversidad, compositión funcional y estructura de tamaños del plancton en un sistema eutrófico y otro hipereutrófico: Las Albuferas de Adra (Almería). Ph.D. Dissertation. University of Granada, Granada, Spain.Google Scholar
  16. George, D. G. and R. W. Edwards. 1976. The effect of wind on the distribution of Chl-a and Crustacean plankton in a shallow eutrophic reservoir. Journal of Applied Ecology 13: 667–690.CrossRefGoogle Scholar
  17. Gómez, E., M. Fillit, M. C. Ximenes, and B. Picot. 1998. Phosphate mobility at the sediment-water interface of a Mediterranean lagoon (etang du Méjean), seasonal phosphate variation. Hydrobiologia 373/374: 203–216.CrossRefGoogle Scholar
  18. González-Bernáldez, F. 1992. Ecological aspects of wetland/groundwater relationships in Spain. Limnetica 8: 11–26.Google Scholar
  19. Harris, G. P. 1980. Temporal and spatial scales in phytoplankton ecology. Mechanisms, methods, models and management. Canadian Journal of Fisheries and Aquatic Sciences 37: 877–900.CrossRefGoogle Scholar
  20. Havens, K. E., T. Fukushima, P. Xie, T. Iwakuma, R. T. James, N. Takamura, T. Hanazato, and T. Yamamoto. 2001. Nutrient dynamics and the eutrophication of shallow lakes Kasumigaura (Japan), Donghu (PR China), and Okeechobee (USA). Environmental Pollution 111: 263–272.CrossRefPubMedGoogle Scholar
  21. Hayashi, M., G. van der Kamp, and D. L. Rudolph. 1998. Water and solute transfer between a prairie wetland and adjacent uplands, 1. water balance. Journal of Hydrology 207: 42–55.CrossRefGoogle Scholar
  22. Idso, S. B. 1973. On the concept of lake stability. Limnology and Oceanography 18: 681–683.CrossRefGoogle Scholar
  23. Jeffrey, S. W. and G. F. Humphrey. 1975. New spectrophotometric equations for determining chlorophylls a, b, c1 and c2 in higher plants, algae and natural phytoplankton. Biochemical Physiology 167: 191–194.Google Scholar
  24. Kleeberg, A. 2002. Phosphorus sedimentation in seasonal anoxic Lake Scharmützel, NE Germany. Hydrobiologia 472: 53–65.CrossRefGoogle Scholar
  25. LaBaugh, J. W. 1986. Wetlands ecosystem studies from a hydrologic perspective. Water Research Bulletin 22: 1–10.Google Scholar
  26. Lijklema, L. 1994. Nutrient dynamics in shallow lakes: effects of changes in loading and role of sediment-water interactions. Hydrobiologia 275/276: 335–348.CrossRefGoogle Scholar
  27. Lucena, J. R., J. Hurtado, and F. A. Comin. 2002. Nutrients related to the hydrologic regime in the coastal lagoons of Viladecans (NE Spain). Hydrobiologia 475/476: 413–422.CrossRefGoogle Scholar
  28. Martín Rosales, W. 1997. Efectos de los diques de retención en el borde meridional de la Sierra de Gador (Almeria). Ph.D. Dissertation. University of Granada, Granada, Spain.Google Scholar
  29. Martínez-Vidal, J. L. and H. Castro (eds.) 1990. Las Albuferas de Adra. Estudio Integral. Diputación Provincial de Almería, Almería, Spain.Google Scholar
  30. Moreno-Ostos, E. 2004. Spatial dynamics of phytoplankton in El Gergal Reservoir (Seville, Spain). Ph.D. Dissertation. University of Granada, Granada, Spain.Google Scholar
  31. Moreno-Ostos, E., D. F. Roland, and L. Cruz-Pizarro. 2002. Descripción y seguimiento de una fase de “aclaramiento del agua” en la Laguna Honda de la Albufera de Adra (Almería). p. 154. In Proceedings of the XI Congress of the Spanish Limnological Association and III Iberian Congress on Limnology. CEDEX, Madrid, Spain.Google Scholar
  32. Mullin, J. B. and J. P. Riley. 1955. The colorimetric determination of silicate with special reference to sea and natural waters. Analytica Chimica Acta 12: 162–176.CrossRefGoogle Scholar
  33. Murphy, J. and J. P. Riley. 1962. A modified single solution method for the determination of phosphate in natural waters. Analytica Chimica Acta 27: 31–36.CrossRefGoogle Scholar
  34. Ortega, F., M. Paracuellos, and F. Guerrero. 2004. Corología de macrófitos acuáticos en Andalucía oriental. Lazaroa 25: 179–185.Google Scholar
  35. Pütz, K. 1998. The importance of pre-reservoirs for the control of eutrophication of reservoirs. Water Science and Technology 37: 317–324.CrossRefGoogle Scholar
  36. Reynolds, C. S. 1988. The concept of biological succession applied to seasonal periodicity of phytoplankton. Verhandlungen International Verein Limnologie 23: 683–691.Google Scholar
  37. Reynolds, C. S. 1995. The intermediate disturbance hypothesis and its applicability to planktonic communities: comments on the views of Padisák and Wilson. New Zealand Journal of Ecology 19: 219–225.Google Scholar
  38. Reynolds, C. S., J. Padisák, and U. Sommer. 1993. Intermediate disturbance in the ecology of phytoplankton and the maintenance of species diversity: a synthesis. Hydrobiologia 249: 13–422.Google Scholar
  39. Rodrigues da Silva, S. L. 2004. Análisis experimental “in vitro” de las interacciones entre Cianobacterias y Daphnia magna de las lagunas de la Albufera de Adra. Ph.D. Dissertation. University of Granada, Granada, Spain.Google Scholar
  40. Rouen, M. A., D. G. George, and D. P. Hewitt. 2003. Using an automatic monitoring station to asses the impact of episodic mixing on the seasonal succession of phytoplankton. Verhandlungen International Verein Limnologie 27: 2972–2976.Google Scholar
  41. Scheffer, M., S. Rinaldi, J. Huisman, and F. J. Weissing. 2003. Why plankton communities have no equilibrium: solutions to the paradox. Hydrobiologia 491: 9–18.CrossRefGoogle Scholar
  42. Soranno, P. A. 1997. Factors affecting the timing of surface scums and epilimnetic blooms of blue green algae in a eutrophic lake. Canadian Journal of Fisheries and Aquatic Sciences 54: 1965–1975.CrossRefGoogle Scholar
  43. StatSoft Inc. 1997. Statistica for Windows (computer program manual). Tulsa, OK, USA.Google Scholar
  44. Temez, J. R. 1978. Cálculo hidrometeorológico de caudales máximos en pequeñas cuencas naturales. Ministerio de Obras Públicas y Transportes, Madrid, Spain.Google Scholar
  45. Vitt, D. H., S. E. Bayley, and T. L. Jin. 1995. Seasonal variation in water chemistry over a bog-rich fen gradient in Continental Western Canada. Canadian Journal of Fisheries and Aquatic Sciences 52: 587–606.CrossRefGoogle Scholar

Copyright information

© Society of Wetland Scientists 2006

Authors and Affiliations

  • Inmaculada de Vicente
    • 1
    • 2
  • Enrique Moreno-Ostos
    • 1
    • 3
  • Victoria Amores
    • 1
  • Francisco Rueda
    • 1
  • Luis Cruz-Pizarro
    • 1
  1. 1.Water Research InstituteUniversity of GranadaGranadaSpain
  2. 2.Institute of BiologyUniversity of Southern DenmarkOdense MDenmark
  3. 3.Flumen Research Group Department of EcologyUniversity of BarcelonaBarcelonaSpain

Personalised recommendations