, Volume 26, Issue 3, pp 793–802 | Cite as

Diatom-based bioassessment in wetlands: How many samples do we need to characterize the diatom assemblage in a wetland adequately?



Diatom-based bioassessment in wetlands requires quantitative characterization of spatial and temporal variability of the diatom assemblages within each wetland. The purpose of this study was to examine surface-sediment diatom distributional patterns in a wetland to determine how best to sample these systems to capture spatial variability in the assemblage. Diatoms and environmental conditions were characterized from 29 sampling points within a wetland in the floodplain of the Columbia River, Oregon, USA. A total of 159 diatom taxa were identified in the surface-sediment samples. Species richness was high at each sampling point (median: 42, range: 23–57), and relative abundances of common taxa varied between 15 and 39% throughout the wetland. Assemblages contained taxa with both benthic (e.g., Staurosira construens, Nitzschia palea, Fragilaria capucina, Achnanthidium minutissimum) and planktonic (e.g., Aulacoseira granulata and Tabellaria spp.) preferences. Non-metric multidimensional scaling (NMDS) techniques detected differences in the low marsh and upper marsh sediment diatom assemblages. Geostatistical analysis showed spatial autocorrelation of the diatom assemblage in the wetland, measured as semivariance and Moran’s I. A simulation procedure indicated that changes in diatom species richness stabilized after approximately five samples were composited. Our results suggest that the wetland surface sediment diatom assemblage is heterogeneous and that hydrologic gradients may be an important structuring force. Diatom-based bioassessment has the potential to be a useful tool in assessing wetland environmental conditions; however, the shallow nature and complex hydrology of these systems require careful sampling design to adequately characterize the diatom assemblage.

Key Words

diatoms bioassessment nonmetric multidimensional scaling (NMDS) geostatistics Oregon Columbia River Floodplain 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature Cited

  1. Adamus, P. R. 2001. Guidebook for Hydrogeomorphic (HGM)-based Assessment of Oregon Wetland and Riparian Sites: Statewide Classification and Profiles. Oregon Division of State Lands, Salem, OR, USA.Google Scholar
  2. Ameel, J. J., R. P. Axler, and C. J. Owen. 1993. Persulfate digestion for determination of total nitrogen and phosphorus in low-nutrient waters. American Environmental Laboratories 5: 1–11.Google Scholar
  3. Anderson, N. J. 1990. Variability of diatom concentrations and accumulation rates in sediments of a small lake basin. Limnology and Oceanography 35: 497–508.CrossRefGoogle Scholar
  4. Bradbury, J. P. and T. C. Winter. 1976. Areal distribution and stratigraphy of diatoms in the sediments of Lake Salle, Minnesota. Ecology 57: 1005–1014.CrossRefGoogle Scholar
  5. Brugam, R. B., K. McKeever, and L. Kolesa. 1998. A diatominferred water depth reconstruction for and Upper Peninsula, Michigan Lake. Journal of Paleolimnology 20: 267–276.CrossRefGoogle Scholar
  6. Cao, Y., D. P. Larsen, R. M. Hughes, P. L. Angermeier, and T. M. Patton. 2002. Sampling effort affects multivariate comparisons of stream assemblages. Journal of the North American Benthological Society 21: 701–714.CrossRefGoogle Scholar
  7. Carper, G. L. and R. W. Bachmann. 1984. Wind resuspension of sediments from a Prairie Lake. Canadian Journal of Fisheries and Aquatic Sciences 41: 1763–1767.Google Scholar
  8. Cattaneo, A., G. Galanti, S. Gentinetta, and S. Romo. 1998. Epiphytic algae and macroinvertebrates on submerged and floating-leaved macrophytes in an Italian lake. Freshwater Biology 39: 725–740.CrossRefGoogle Scholar
  9. Charles, D. F., S. S. Dixit, B. F. Cumming, and J. P. Smol. 1991. Variability in diatom and chryosphyte assemblages and inferred pH: paleolimnological studies of Big Moose Lake, New York, USA. Journal of Paleolimnology 5: 267–284.CrossRefGoogle Scholar
  10. Clesceri, L. S., A. E. Greenberg, and A. D. Eaton. 1998. Standard Methods for the Examination of Water and Wastewater, 20th Edition. American Public Health Association, Baltimore, MD, USA.Google Scholar
  11. Dieter, C.D. 1990. The importance of emergent vegetation in reducing the sediment resuspension in wetlands. Journal of Freshwater Ecology 5: 467–473.Google Scholar
  12. Dixit, A. S., S. S. Dixit, and J. P. Smol. 1992. Long-term trends in lake water pH and metal concentrations inferred from diatoms and chrysophytes in three lakes near Sudbury, Ontario. Canadian Journal of Fisheries and Aquatic Sciences 49: 17–24.CrossRefGoogle Scholar
  13. Dixit, S. S. and J. P. Smol. 1994. Diatoms as indicators in the Environmental Monitoring and Assessment Program — Surface Waters (EMAP-SW). Environmental Monitoring and Assessment 31: 275–306.Google Scholar
  14. Earle, J. C., H. C. Duthie, W. A. Glooschenko, and P. B. Hamilton. 1988. Factors affecting the spatial distribution of diatoms on the surface sediments of three Precambrian Shield lakes. Canadian Journal of Fisheries and Aquatic Sciences 45: 469–478.CrossRefGoogle Scholar
  15. Eminson, D. and B. Moss. 1980. The composition and ecology of periphyton communities in freshwaters. 1 The influence of host type and external environment on community composition. British Phycological Journal 15: 429–446.CrossRefGoogle Scholar
  16. Fennessy, M. S., C. C. Brueske, and W. J. Mitsch. 1994. Sediment deposition patterns in restored freshwater wetlands using sediment traps. Ecological Engineering 3: 409–428.CrossRefGoogle Scholar
  17. Fritz, S. C., B. F. Cumming, F. Gasse, and K. R. Laird. 1999. p. 41–72. In E. F. Stoermer and J. P. Smol (eds.) The Diatoms: Applications for the Environmental and Earth Sciences. Cambridge University Press, Cambridge, UK.Google Scholar
  18. Goldsborough, L. G. and G. G. C. Robinson. 1996. Pattern in wetlands. p. 78–117, In R. J. Stevenson, M. L. Bothwell, and R. L. Lowe (eds.) Algal Ecology: Freshwater Benthic Ecosystems. Academic Press, San Diego, CA, USA.Google Scholar
  19. Kelly, M. G. and B. A. Whitton. 1995. The trophic diatom index: a new index for monitoring eutrophication in rivers. Journal of Applied Phycology 7: 433–444.CrossRefGoogle Scholar
  20. Kienel, U. and T. Kumke. 2002. Combining ordination techniques and geostatistics to determine the patterns of diatom distributions at Lake Lama, Central Siberia. Journal of Paleolimnology 28: 181–194.CrossRefGoogle Scholar
  21. Krammer, K. and H. Lange-Bertalot. 1986. Bacillariophyceae, Teil 1. Naviculaceae. Spektrum Akademischer Verlag, Heidelberg, Germany.Google Scholar
  22. Krammer, K. and H. Lange-Bertalot. 1988. Bacillariophyceae, Teil 2. Epithemiaceae, Bacillariophyceae, Surirellaceae. Spektrum Akademischer Verlag, Heidelberg, Germany.Google Scholar
  23. Krammer, K. and H. Lange-Bertalot. 1991a. Bacillariophyceae, Teil 3. Centrales, Fragilariaceae, Eunotiaceae, Achnanthaceae. Spektrum Akademischer Verlag, Heidelberg, Germany.Google Scholar
  24. Krammer, K. and H. Lange-Bertalot. 1991b. Bacillariophyceae, Teil 4. Achnanthaceae, Kritische Erganzungen zu Navicula (Lineolate) und Gomphonema. Spektrum Akademischer Verlag, Heidelberg, Germany.Google Scholar
  25. Krammer, K. and H. Lange-Bertalot. 2000. Bacillariophyceae, Part 5. English and French Translation of the Keys. Spektrum Akademischer Verlag, Heidelberg, Germany.Google Scholar
  26. Legendre, P. and M. Fortin. 1989. Spatial pattern and ecological analysis. Vegetatio 80: 107–138.CrossRefGoogle Scholar
  27. McCormick, P. and M. O’Dell. 1996. Quantifying periphyton responses to phosphorus in the Florida Everglades: a synoptic experimental approach. Journal of the North American Benthological Society 15: 450–468.CrossRefGoogle Scholar
  28. McCune, B. and M. J. Mefford. 1999. Multivariate Analysis of Ecological Data v. 4.14. MjM Software, Gleneden Beach, OR, USA.Google Scholar
  29. Moos, M. T., K. R. Laird, and B. F. Cumming. 2005. Diatom assemblages and water depth in Lake 239 (Experimental Lakes Area, Ontario): implications for paleoclimatic studies. Journal of Paleolimnology 34: 217–227.CrossRefGoogle Scholar
  30. Omernik, J. M. and A. L. Gallant. 1986. Ecoregions of the Pacific Northwest. Map scale 1:2,500,000. U. S. Environmental Protection Agency, Corvallis, Oregon, USA. EPA/600/3-86/473.Google Scholar
  31. Pan, Y. and R. J. Stevenson. 1996. Gradient analysis of diatom assemblages in western Kentucky wetlands. Journal of Phycology 32: 222–232.CrossRefGoogle Scholar
  32. Pan, Y., R. J. Stevenson, P. Vaithiyanathan, J. Slate, and C. J. Richardson. 2000. Changes in algal assemblages along observed and experimental phosphorus gradients in a subtropical wetland, USA. Freshwater Biology 44: 339–354.CrossRefGoogle Scholar
  33. Passy, S. I. 2001. Spatial paradigms of lotic diatom distribution: a landscape ecology perspective. Journal of Phycology 37: 370–378.CrossRefGoogle Scholar
  34. Patrick, R. and C. W. Reimer. 1966. The Diatoms of the United States. Vol. 1, Monographs of the Academy of Natural Sciences of Philadelphia No. 13, Philadelphia, PA, USA.Google Scholar
  35. Patrick, R. and C. W. Reimer. 1975. The Diatoms of the United States. Vol. 2, Monographs of the Academy of Natural Sciences of Philadelphia No. 13, Philadelphia, PA, USA.Google Scholar
  36. Pip, E. and G. G. C. Robinson. 1984. A comparison of algal periphyton composition on eleven species of submerged macrophytes. Hydrobiological Bulletin 18: 109–118.CrossRefGoogle Scholar
  37. Potapova, M. G., D. F. Charles, K. C. Ponader, and D. M. Winter. 2004. Quantifying species indicator values for trophic diatom indices: a comparison of approaches. Hydrobiologia 517: 25–41.CrossRefGoogle Scholar
  38. Robinson, G. G. C., S. E. Gurney, and L. G. Goldsborough. 1997a. Response of benthic and planktonic algal biomass to experimental water-level manipulation in a prairie lakeshore wetland. Wetlands 17: 167–181.Google Scholar
  39. Robinson, G. G. C., S. E. Gurney, and L. G. Goldsborough. 1997b. The primary productivity of benthic and planktonic algae in a prairie wetland under controlled water-level regimes. Wetlands 17: 182–194.Google Scholar
  40. Schalles, J. F. and D. J. Shure. 1989. Hydrology, community structure, and productivity patterns of a dystrophic Carolina Bay wetland. Ecological Monographs 59: 365–385.CrossRefGoogle Scholar
  41. Sokal, R. R. and N. L. Oden. 1978. Spatial autocorrelation in biology 1. Methodology. Biological Journal of Linnaean Society 10: 199–228.CrossRefGoogle Scholar
  42. Stevenson, R. J. and L. L. Bahls. 1999. Periphyton protocols. p. 6-1–6-22, In M. T. Barbour, J. Gerritsen, and B. D. Snyder (eds.) Protocols for Use in Wadeable Streams and Rivers: Periphyton, Benthic Macroinvertebrates, and Fish Second Edition. U. S. Environmental Protection Agency, Washington, DC, USA. EPA 841-B-99-002.Google Scholar
  43. Stevenson, R. J. and Y. Pan. 1999. Assessing environmental conditions in rivers and streams with diatoms. p. 11–40, In E. F. Stoermer and J. P. Smol (eds.) The Diatoms: Applications for the Environmental and Earth Sciences. Cambridge University Press, Cambridge, England.Google Scholar
  44. Van Dam, H., A. Mertens, and J. Sinkeldam. 1994. A coded checklist and ecological indicator values of freshwater diatoms from the Netherlands. Netherlands Journal of Aquatic Ecology 28: 117–133.CrossRefGoogle Scholar
  45. Wetzel, R. G. and G. E. Likens. 1991. Limnological Analysis. Springer-Verlag, New York, NY, USA.Google Scholar
  46. Wilcox, D. A., J. E. Meeker, P. L. Hudson, B. J. Armitage, M. G. Black, and D. G. Uzarski. 2002. Hydrologic variability and the application of index of biotic integrity metrics to wetlands: a Great Lakes evaluation. Wetlands 22: 588–615.CrossRefGoogle Scholar
  47. Winter, J. G. and H. C. Duthie. 2000. Epilithic diatoms as indicators of stream total N and total P concentration. Journal of North American Benthological Society 19: 32–49.CrossRefGoogle Scholar
  48. Wolfe, A. P. 1996. Spatial patterns of modern diatom distribution and multiple paleolimnological records from a small arctic lake on Baffin Island, Arctic Canada. Canadian Journal of Botany 74: 435–449.CrossRefGoogle Scholar

Copyright information

© Society of Wetland Scientists 2006

Authors and Affiliations

  1. 1.Environmental Sciences and ResourcesPortland State UniversityPortlandUSA

Personalised recommendations