Wetlands

, Volume 24, Issue 1, pp 152–166 | Cite as

Dormancy patterns, germination ecology, and seed-bank types of twenty temperate fen grassland species

  • Kai Jensen
Article

Abstract

The germination ecology, including primary and secondary dormancy, mortality of seeds, and seed-bank type, of 20 fen grassland species from Northern Germany was investigated using a combination of burial and germination experiments. To analyze primary dormancy and effects of after-ripening (dry storage for 28 days) on freshly matured seeds, germination was measured at two fluctuating temperature regimes (15/25°C and 5/15°C) in the light and in darkness. Temporal changes in dormancy were investigated by burying seeds at 8–10 cm depth in nylon bags, exhuming samples at bimonthly intervals over a period of two years, and analyzing germination at the above-mentioned temperature and light treamtents. Additional seed samples were retrieved five years after burial to determine seed longeity and seed-bank type. Freshly matured seeds of all species except Bromus racemosus showed primary dormancy. Dry after-ripening significantly increased germination in Parnassia palustris and Triglochin palustre. Mortality of buried seeds of Bromus racemosus, Sanguisorba officinalis, and Succisa pratensis reached 100% within 12 months (transient seed banks). All other species germinated both in the first and in the second growth period after burial and (with the exception of Briza media) showed annual changes in dormancy. For Silene flos-cuculi and Juncus filiformis, dormancy cycles were detected only in the dark treatments. Most species had a lower percentage germination in darkness than in the light, and the greatest suppression of germination in darkness was found in the small-seeded species (Juncus filiformis and Parnassia palustris). The retrieval of seed samples after five years revealed that most of the fen grassland species examined have short-term, persistent seed banks and thus are buffered against years of poor seed production and/or seedling survival. In addition, a large proportion of the species maintain long-term, persistent seed banks from which re-establishment is possible if management practices and site conditions of degenerated fen grasslands become appropriate following restoration measures.

Key Words

after-ripening dormancy cycles germination ecology seed bank seed longevity restoration ecology 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature Cited

  1. Bakker, J. P. 1989. Nature Management by Grazing and Cutting. Geobotany 14:1–397.Google Scholar
  2. Baskin, C. C. and J. M. Baskin. 1998. Seeds: Ecology, Biogeography and Evolution of Dormancy and Germination. Academic Press, San Diego, CA, USA.Google Scholar
  3. Baskin, C. C., E. W. Chester, and J. M. Baskin, 1996. Effect of flooding on annual dormancy cycles in buried seeds of two wetland Carex species. Wetlands 16:84–88.Google Scholar
  4. Baskin, J. M. and C. C. Baskin. 1985. The annual dormancy cycle in buried weed seeds: a continuum. BioScience 35:492–498.CrossRefGoogle Scholar
  5. Baskin, J. M. and C. C. Baskin. 1988. Germination ecophysiology of herbaceous plant species in a temperate region. American Journal of Botany 75:286–305.CrossRefGoogle Scholar
  6. Baskin, J. M. and C. C. Baskin. 1989. Physiology of dormancy and germination in relation to seed bank ecology. p. 53–66. In M. A. Leck, V. T. Parker, and R. L. Simpson (eds.) Ecology of Soil Seed Banks. Academic Press, San Diego, CA, USA.Google Scholar
  7. Bekker, R. M., G. L. Verweij, R. E. N. Smith, R. Reine, J. P. Bakker, and S. Sneider. 1997. Soil seed banks in European grasslands: does land use affect regeneration perspectives? Journal of Applied Ecology 34:1293–1310.CrossRefGoogle Scholar
  8. Bekker, R. M., J. H. J. Schminee, J. P. Bakker, and K. Thompson. 1998. Seed bank characteristics of Dutch plant communities. Acta Botanica Neerlandica 47:15–26.Google Scholar
  9. Bernhardt, K. G. 1994. Vegetation und Diasporenbanken van Kalkflachmooren und Kalksümpfen. Untersuchungen zum Samenpotential im Kanton St. Gallen (Schweiz). Naturschutz und Landschaftsplanung 26:13–20.Google Scholar
  10. Bigwood, D. W. and D. W. Inouye. 1988. Spatial pattern analysis of seed banks: an improved method and optimized sampling. Ecology 69:497–507.CrossRefGoogle Scholar
  11. Drückhammer, A. and S. Wriedt. 1996. Die Samenbank unterschiedlicher Feuchtgrünland-Gesellschaften Schleswig-Holsteins und ihre Bedeutung für den Artenschutz. Feddes Repertorium 107: 243–261.Google Scholar
  12. Ekstam, B. and A. Forseby. 1999. Germination response of Phragmites australis and Typha angustifolia to diurnal fluctuations in temperature. Seed Science Research 9:157–163.CrossRefGoogle Scholar
  13. Falinska, K. 1999. Seed bank dynamics in abandoned maedows during a 20-year period in the Bialowieza National Park. Journal of Ecology 87:461–475.CrossRefGoogle Scholar
  14. Grime, J. P., G. Mason, A. V. Curtis, J. Rodman, S. R. Band, M. A. G. Mowforth A. M. Neal, and S. Shaw. 1981. A comparative study of germination characteristics in a local flora. Journal of Ecology 69:1017–1059.CrossRefGoogle Scholar
  15. Hurlbert, S. H. 1984. Pseudoreplication and the design of ecological field experiments. Ecological Monographs 54:187–211.CrossRefGoogle Scholar
  16. Jensen, K. 1998. Species composition of soil seed bank and seed rain of abandoned wet meadows and their relation to the aboveground vegetation. Flora 193:345–359.Google Scholar
  17. Karrssen, C. M. 1982. Seasonal patterns in dormancy in weed seeds. p. 243–270. In A. A. Khan (ed.) The Physiology and Biochemistry of Seed Development, Dormancy and Germination. Elsevier, Amsterdam, The Netherlands.Google Scholar
  18. Keddy, P. A. and A. A. Reznicek. 1982. The role of seed banks in the persistence of Ontario’s coastal plain flora. American Journal of Botany 69:13–22.CrossRefGoogle Scholar
  19. Maas, D. 1989. Germination characteristics of some plant species from calcareous fens in southern Germany and their implications for the seed bank. Holarctic Ecology, 12:337–344.Google Scholar
  20. Maas, D. and A. Schopp-Gluth. 1995. Seed banks in fen areas and their potential use in restoration ecology. p. 189–206. In B. D. Wheeler, S. C. Shaw, W. J. Fojt and R. A. Robertson (eds.) Restoration of Temperate Wetlands. Wiley & Sons, Chichester, UK.Google Scholar
  21. McDonald, A. W., J. P. Bakker, and K. Vegelin. 1996. Seed bank classification and its importance for the restoration of species-rich flood-meadows. Journal of Vegetation Science 7:157–164.CrossRefGoogle Scholar
  22. Mierwald, U. and J. Beller. 1990. Rote Liste der Farn- und Blütenpflanzen Schleswig-Holsteins. Landesamt Naturschutz und Landschaftspflege Schleswig-Holstein: 1–64.Google Scholar
  23. Mika, V. 1978. Der Vorrat an keimfähigen Samen in südböhmischen Niedermoorböden. Zeitschrift für Acker- und Pflanzenbau 146: 222–234.Google Scholar
  24. Milberg, P. 1994. Annual dark dormancy cycle in buried seeds of Lychnis flos-cuculi. Annales Botanicae Fennici 31:163–167.Google Scholar
  25. Milberg, P., L. Andersson, and K. Thompson. 2000. Large-seeded species are less dependent on light for germination than smallseeded ones. Seed Science Research 10:99–104.CrossRefGoogle Scholar
  26. Morrison, D. A. and E. C. Morris 2000. Pseudoreplication in experimental designs for the manipulation of seed germination treatments. Austral Ecology 25:292–296.Google Scholar
  27. Murdoch, A. J. and R. H. Ellis. 2000. Dormancy, viability and longevity. p. 193–229. In M. Fenner (ed.) Seeds. The Ecology of Regeneration in Plant Communities. 2nd edition CABI International. Wallingford, UK.Google Scholar
  28. Olff, H., D. M. Pegtel, J. M. Van Groenendael, and J. P. Bakker 1994. Germination strategies during grassland succession. Journal of Ecology 82:69–77.CrossRefGoogle Scholar
  29. Patzelt, A., U. Wild, and J. Pfadenhauer. 2001. Restoration of wet fen meadows by topsoil removal: vegetation development and germination biology of fen species. Restoration Ecology 9:127–136.CrossRefGoogle Scholar
  30. Pfadenhauer, J. and D. Maas. 1987. Samenpotential von Niedermoorböden des Alpenvorlandes bei Grünlandnutzung unterschiedlicher Intensität. Flora 179:85–97.Google Scholar
  31. Pons, T. L. 1989. Breaking of seed dormancy by nitrate as a gap detection mechanism. Annals of Botany 63:139–143.Google Scholar
  32. Pons, T. J. 1991. Dormancy, germination and mortality of seeds in a chalk-grassland flora. Journal of Ecology 79:765–780.CrossRefGoogle Scholar
  33. Poschlod, P. 1993. Die Dauerhaftigkeit von generativen Diasporenbanken in Böden am Beispiel von Kalkmagerrasenpflanzen und deren Bedeutung für den botanischen Arten- und Biotopschutz. Verhandlungen der Gesellschaft für Ökologie 22:229–240.Google Scholar
  34. Probert, R. J. 2000. The role of temperature in the regulation of seed dormancy and germination. p. 261–292. In M. Fenner (ed.) Seeds. The Ecology of Regeneration in Plant Communities, 2nd edition. CABI International, Wallingford, UK.Google Scholar
  35. Roberts, H. A. and P. M. Feast. 1973. Changes in the numbers of viable weed seeds in soil under different regimes. Weed Research 13:298–303.CrossRefGoogle Scholar
  36. Schütz, W. 1997. Primary dormancy and annual dormancy cycles in seeds of six temperate wetland sedges. Aquatic Botany 59:75–85.CrossRefGoogle Scholar
  37. Schütz, W. 1998. Seed dormancy cycles and germination phenologies in sedges (Carex) from various habitats. Wetlands 18:288–297.CrossRefGoogle Scholar
  38. Schütz, W. 1999. Germination responses of temperate Carex-species to diurnally fluctuating temperatures—a comparative study. Flora 194:21–32.Google Scholar
  39. Schütz, W. and P. Milberg. 1997. Seed dormancy in Carex canescens: regional differences and ecological consequences. Oikos 78: 420–428.CrossRefGoogle Scholar
  40. Statsoft, 2001. Statistica for Windows, Version 6.0. Statsoft Inc, Tulsa, OK, USA.Google Scholar
  41. ter Borg, S. J. T. 1985. Population biology and habitat relations of some hemiparasitic Scrophulariaceae. p. 463–485. In J. White (ed.) The Population Structure of Vegetation. Junk Publishers. Dordrecht, The Netherlands.Google Scholar
  42. Thompson, K. and J. P. Grime. 1983. A comparative study of germination responses to diurnally fluctuating temperatures. Journal of Applied Ecology 20:141–156.CrossRefGoogle Scholar
  43. Thompson, K., J. P. Bakker, and R. M. Bekker. 1997. The Soil Seed Banks of North West Europe: Methodology, Density and Longevity. Cambridge University Press, Cambridge, UK.Google Scholar
  44. van der Valk, A. G. and J. T. A. Verhoeven. 1988. Potential role of seed banks and understorey species in restoring quaking fens from floating forests. Vegetatio 76:3–13.Google Scholar
  45. Wagner, M., P. Poschlod, and R. P. Setchfield. 2003. Soil seed bank in managed and abandoned semi-natural meadows in Soomaa National Park, Estonia. Annales Botanici Fennici 40:87–100.Google Scholar
  46. Werner, P. A. and W. J. Platt. 1976. Ecological relationships of cooccurring goldenrods (Solidago: Compositae). American Naturalist 110:959–971.CrossRefGoogle Scholar
  47. Wesson, G. and P. F. Warreing. 1969. The role of light in the germination of naturally occurring populations of buried weed seeds. Journal of Experimantal Botany 20:402–413.CrossRefGoogle Scholar
  48. Wheeler, B. D. 1995. Introduction: Restoration and Wetlands. p. 1–19. In B. D. Wheeler, S. C. Shaw, W. J. Foijt, and R. A. Robertson (eds.) Restoration of Temperate Wetlands, Wiley & Sons, Chichester, UK.Google Scholar
  49. Wisskirchen, R. and H. Haeupler 1998. Standardliste der Farn- und Blütenpflanzen Deutschlands. Ulmer, Stuttgart, Germany.Google Scholar

Copyright information

© Society of Wetland Scientists 2004

Authors and Affiliations

  • Kai Jensen
    • 1
  1. 1.Ecology Research Centre KielKielGermany

Personalised recommendations