Wetlands

, 22:355 | Cite as

The upland holocene transitional mires of Elatia forest, northern Greece

  • Stephanos Papazisimou
  • Antonis Bouzinos
  • Kimon Christanis
  • Polychronis C. Tzedakis
  • Stavros Kalaitzidis
Article

Abstract

Four small mires, located at an altitude of 1520 m in the forest complex of Elatia, western Rhodope Massif, northern Greece, were examined in terms of shape, physical and chemical features, plant communities, hydrologic regime, geotectonic setting, and developmental history. The data suggest that the terms bog or fen cannot strictly describe the mires. The mixed vegetation cover of both bog and fen species, the water supply regime (meteoric and surface), the low electrical conductivity, the slightly acidic to subneutral pH values, and the high ash contents support the notion that the mires at Elatia forest can be initially classified as transitional mires. This term is for the first time attributed to mires in Greece. Peat deposition at one of the sites was initiated c. 2,380 years ago but was intermittent to the present day.

Key Words

transitional mire peat Greece 

Literature Cited

  1. American Society for Testing and Materials (ASTM). 1996. D 2015-95, Test Method for Gross Calorific Value of Coal and Coke by the Adiabatic Bomb Calorimeter. Annual book of ASTM standards, vol. 05.05, Philadelphia, USA.Google Scholar
  2. Athanasiadis, N., A. Gerasimidis, E. Eleftheriadou, and K. Theodoropoulos. 1993. Zur postglazialen Vegetationsentwicklung des Rhodopi-Gebirges (Elatia Dramas-Griechenland). Dissertationes Botanicae 196:427–437.Google Scholar
  3. Bennett, K. D. 1998. Documentation for psimpoll 3.10 and pscomb 1.03 C programs for plotting pollen diagrams and analysing pollen data. Department of Quaternary Geology, Uppsala University (http://www.kv.geo.uu.se/software.html).Google Scholar
  4. Berglund, B. E. and M. Ralska-Jasiewiczowa. 1986. Pollen analysis and pollen diagrams. p. 455–484. In B. E. Berglund (ed.) Handbook of Holocene Palaeoecology and Palaeohydrology. Wiley, Chichester, UK.Google Scholar
  5. Botis, A., A. Bouzinos, and K. Christanis. 1993. The geology and palaeoecology of the Kalodiki peatland, western Greece. International Peat Journal 5:25–34.Google Scholar
  6. Bouzinos, A., S. Papazisimou, K. Christanis, and P. C. Tzedakis. 2001. High peat accumulation rate in the tectonic depression of Katouna, western Greece. International Peat Journal 10:85–95.Google Scholar
  7. Bozilova, E., J. Atanassova, S. Tonkov, and H. Panovska. 2000. Palynological investigation of peat bogs in the Western Rhodope mountains (Southern Boulgaria). Geotechnical Scientific Issues 11/3:233–247.Google Scholar
  8. Burmeister, E. G., K. H. Göttlich, Th. Grospietsch, and G. Kaule. 1990. Begriffsbestimmungen anhand der Moortypen Mitteleuropas. p. 1–28. In K. H. Göttlich (ed.) Moor- und Torfkunde. Schweizerbart, Stuttgart, Germany.Google Scholar
  9. Christanis, K. 1983. Ein Torf erzählt die Geschichte seines Moores. Telma 13:19–32.Google Scholar
  10. Christanis, K. 1992. Rezente Torfbildung im Verlandungsgürtel griechischer Seen: Das Beispiel des Klein-Prespa-Niedermoores. Telma 22:27–35.Google Scholar
  11. Christanis, K. 1994. The genesis of the Nissi peatland (NW Greece), as an example of peat and lignite deposit formation in Greece. International Journal of Coal Geology 26:63–77.CrossRefGoogle Scholar
  12. Christanis, K., A. Georgakopoulos, J. L. Fernández-Turiel, and A. Bouzinos. 1998. Geological factors influencing the concentration of trace elements in the Philippi peatland, eastern Macedonia, Greece. International Journal of Coal Geology 36:295–313.CrossRefGoogle Scholar
  13. Dafis, S., E. Papastergiadou, K. Georghiou, D. Babalonas, T. Georgiadis, M. Papageorgiou, T. Lazaridou, and V. Tsiaoussi. 1996. Directive 92/43/EEC, The Greek “Habitat” Project NATURA 2000: An Overview. Greek Biotope/Wetland Centre, Thessaloniki, Greece.Google Scholar
  14. Dinter, D. A. 1998. Late Cenozoic extension of the Alpine collisional orogen, northeastern Greece: Origin of the north Aegean basin. Geological Society of America Bulletin 110/9:1208–1230.CrossRefGoogle Scholar
  15. Gerasimidis, A. and N. Athanasiadis. 1995. Woodland history of northern Greece from the mid Holocene to recent time based on evidence from peat pollen profiles. Vegetation History and Archaeobotany 4:109–116.CrossRefGoogle Scholar
  16. Gore, A. J. P. 1983. Introduction. p. 1–34. In A. J. P. Gore (ed.) Ecosystems of the World, 4A. Mires: Swamp, Bog, Fen and Moor, General Studies. Elsevier, Amsterdam, The Netherlands.Google Scholar
  17. Grosse-Brauckmann, G. 1973. Zum Verlauf der Verlandung bei einem eutrophen Flachsee (nach quartärbotanischen Untersuchungen am Steinhuder Moor). I. Heutige Vergetationszonierung, torfbildende Pflanzengesellschaften der Vergangenheit. Flora 163: 179–229.Google Scholar
  18. Kaule, G. and K. H. Göttlich. 1990. Sonderstellung der Moore in Volksglauben und Kunst. p. 1–28. In K. H. Göttlich (ed.) Moor-und Torfkunde, 3. Aufl., Schweizerbart, Stuttgart, Germany.Google Scholar
  19. NWWG (National Wetlands Working Group). 1988. Wetlands of Canada. Ecological Land Classification Series No. 24. Sustainable Development Branch, Environment Canada, Ottawa, ON. Canada, Polyscience Publications, Montreal, PQ, Canada.Google Scholar
  20. Naucke, W. 1990. Chemie von Moor und Torf. p. 237–261. In K. H. Göttlich (ed.) Moor- und Torfkunde. Schweizerbart, Stuttgart, Germany.Google Scholar
  21. Panilas, S., J. Diamantis, and Ch. Petalas. (2002). Study of the hydrogeological and hydrochemical characteristics of the ground-water at the Drama basin (in Greek). Proceedings of the 5th Panhellenic Hydrogeologic Congress. Cyprus Association of Geologists and Mining Engineers, Nicosia, Cyprus.Google Scholar
  22. Schneekloth, H. 1981. Kartierung von Mooren. p. 35–37. In F. Bender (ed.) Angewandte Geowissenschaften, vol. 1. Enke, Stuttgart, Germany.Google Scholar
  23. Schneekloth, H. 1990. Klassifizierung. p. 59–64. In K. H. Göttlich (ed.) Moor- und Torfkunde. Schweizerbart, Stuttgart, Germany.Google Scholar
  24. Shotyk, W. 1988. Review of the inorganic geochemistry of peats and peatland waters. Earth-Science Reviews 25:95–176.CrossRefGoogle Scholar
  25. Shotyk, W. 1989. The chemistry of peatland waters. Water Quality Bulletin 14:47–58.Google Scholar
  26. Shotyk, W. 1996. Peat bog archives of atmospheric metal deposition: geochemical evaluation of peat profiles, natural variations in metal concentrations, and metal enrichment factors. Environmental Reviews 4:148–183.CrossRefGoogle Scholar
  27. Stuiver, M. and G. W. Pearson. 1993. High-precision bidecadal calibration of the Radiocarbon Time Scale, 500–2500 BC. Radiocarbon 35:1–23.Google Scholar
  28. Stuiver, M. and P. J. Reimer. 1993. Extended 14C data base and revised CALIB 3.0 14C Age Calibration Program. Radiocarbon 35:215–230.Google Scholar
  29. Succow, M. and L. Jeschke. 1990. Moore in der Landschaft. Harri Deutsch, Thun-Frankfurt/Main, Germany.Google Scholar
  30. Tutin, T. G., V. H. Heywood, D. M. Moore, D. H. Valentine, S. M. Walters, and D. A. Webb. 1964–1980. Flora Europea, 5 vols. Cambridge University Press, Cambridge, UK.Google Scholar

Copyright information

© Society of Wetland Scientists 2002

Authors and Affiliations

  • Stephanos Papazisimou
    • 1
  • Antonis Bouzinos
    • 1
  • Kimon Christanis
    • 1
  • Polychronis C. Tzedakis
    • 2
  • Stavros Kalaitzidis
    • 1
  1. 1.Department of GeologyUniversity of PatrasRio-PatrasGreece
  2. 2.School of GeographyUniversity of LeedsLeedsUK

Personalised recommendations