, Volume 21, Issue 4, pp 577–592 | Cite as

The faunal composition of espolla pond (ne iberian peninsula): the neglected biodiversity of temporary waters

  • Dani Boix
  • Jordi Sala
  • Ramon Moreno-Amich


The faunal composition, richness, and their determinant factors were analyzed in a Mediterranean temporary pond located in NE Spain. The aquatic community was sampled weekly over 7 periods of flooding during 4 years (1996–1999). Composition of the pond community was found to be influenced by duration of the hydroperiod and, secondarily, by seasonality. Insects and crustaceans were the most well-represented types of fauna. The small numbers of species captured over all hydroperiods spend the dry periods in situ or have an important dispersal capacity. Comparison of the faunal composition of several temporary ponds of temperate latitudes confirms the great diversity of faunal groups found in temporary aquatic environments, and this richness is comparable to that found in permanent water bodies. The richness of these temporary ponds is related to flooded surface and to hydroperiod duration. The peculiarity of the fauna of temporary waters, together the deteriorating condition of those habitats, make it necessary for more active policies of preservation to be pursued.

Key Words

temporary pond richness faunal composition hydroperiod length flooded surface 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature Cited

  1. Aubin, A and A. Leblanc. 1986. Effet des variables abiotiques sur la biomasse animale de sept mares tempopraires d’eau douce du Québec méridional. Hydrobiologia. 139:143–152.CrossRefGoogle Scholar
  2. Baltanás, A., C. Montes, and A. M. Marcos. 1992. Preserving ecological processes, a strategy for biological conservation in fluctuating environments. p. 28–31. In Conserving and Managing Wetlands for Invertebrates. Council of Europe, Vaduz, Liechtenstein.Google Scholar
  3. Barbero, M., J. Giudicelli, R. Loisel, P. Quézel, and E. Terzian. 1982. Etude des bicénoses des mares et ruisseaux temporaires a éphémérophytes dominants en région mégion méditerranéenne. Bulletin d’Écologie 13:387–400.Google Scholar
  4. Barclay, M. H. 1966. An ecological study of a temporary pond near Auckland, New Zealand. Australian Journal of Marine and Freshwater Research 17:239–258.CrossRefGoogle Scholar
  5. Barnes, L. E. 1983. The colonization of ball-clay ponds by macroinvertebrates and macrophytes. Freshwater Biology 13:561–578.CrossRefGoogle Scholar
  6. Bayly, I. A. E. 1982. Invertebrate fauna and ecology of temporary pools on granite outcrops in southern Western Australia. Australian Journal of Marine and Freshwater Research. 33:599–606.CrossRefGoogle Scholar
  7. Bazzanti, M., S. Baldoni, and M. Seminara. 1996. Invertebrate macrofauna of a temporary pond in Central Italy: composition, community parameters and temporal succession. Archiv für Hydrobiologie 137:77–94.Google Scholar
  8. Bevercombe, A. M., N. Cox, M. P. Thomas, and J. O. Young. 1973. Studies of the Invertebrate Fauna of a Wet Slack in a Sand Dune System. Archiv für Hydrobiologie 71:487–516.Google Scholar
  9. Biggs, J., A. Corfield, D. Walker, M. Whitfield, and P. Williams. 1994. New approaches to the management of ponds. British Wildlife 5:273–287.Google Scholar
  10. Bishop, J. A.. 1974. The Fauna of Temporary Rain Pools in Eastern New South Wales. Hydrobiologia 44:319–323.CrossRefGoogle Scholar
  11. Boix, D. 1999. Lu problemàtica de la conservació d’amfibis. El cas de l’estanyol temporani d’Espolla. Full informatiu de la Societat Catalana d’Herpetologia 10:8–9.Google Scholar
  12. Boix, D., J. Sala, and X. Triadó. 2000. Dinàmiques temporals de les larves d’amfibis d’un estanyol temporani. Full informatiu de la Societat Catalana d’Herpetologia 12:13–14.Google Scholar
  13. Boutin, C., L. Lesne, and A. Thiéry. 1982. Ecologie et typologie de quelques mares temporaires à isoètes d’une région aride du Maroc occidental. Ecologia Méditerranea 8:31–56.Google Scholar
  14. Brinkhurst, R. O. and B. G. M. Jamieson. 1971. Aquatic Oligochaeta of the World. Oliver and Boyd. Edinburgh, UK.Google Scholar
  15. Brown, E. S. 1951. The relation between migration-rate and type of habitat in aquatic insects, with special reference to certain species of Corixidae. Proceedings of the Zoological Society of London 121:539–545.Google Scholar
  16. Brown, K. S. 1998. Vanishing pools taking species with them. Science 281:626.CrossRefGoogle Scholar
  17. Collinson, N. H., J. Biggs, A. Corfield, M. J. Hodson, D. Walker, M. Whitfield, and P. J. Williams. 1995. Temporary and permanent ponds: an assessment of the effects of drying out on the conservation value of aquatic macroinvertebrate communities. Biological Conservation 74:125–133.CrossRefGoogle Scholar
  18. Costa, E. 1992. Bullidors i recs intermitents d’Espolla. Muntanya 780:70–76.Google Scholar
  19. Dodson, S. I. 1987. Animal assemblages in temporary desert rock pools: aspects of the ecology of Dasyhelea sublettei (Diptera: Ceratopogonidae). Journal of the North American Benthological Society 6:65–71.CrossRefGoogle Scholar
  20. Driver, E. A. 1977. Chironomid communities in small prairie ponds: some characteristics and controls. Freshwater Biology 7:121–133.CrossRefGoogle Scholar
  21. Duffy, W. G. and D. J. LaBar. 1994. Aquatic invertebrate production in southeastern USA wetlands during winter and spring. Wetlands 14:88–97.Google Scholar
  22. Ebert, T. A. and M. L. Balko. 1987. Temporary pools as islands in space and in time: the biota of vernal pools in San Diego, Southern California. USA. Archiv für Hydrobiologie 110:101–123.Google Scholar
  23. Einsle, U. 1996. Cyclops heberti n.sp. and Cyclops singularis n.sp., two new species within the genus Cyclops (‘strenuus-subgroup’) (Crust. Copepoda) from ephemeral ponds in southern Germany. Hydrobiologia 319:167–177.CrossRefGoogle Scholar
  24. Erman, D. C. and N. A. Erman. 1975. Macroinvertebrate composition and production in some Sierra Nevada minerotrophic peatlands. Ecology 56:591–603.CrossRefGoogle Scholar
  25. Euliss, N. H. Jr. and D. M. Mushet. 1999. Influence of agriculture on aquatic invertebrate communities of temporary wetlands in the praire pothole region of North Dakota. Wetlands 19:578–583.Google Scholar
  26. Eyre, M. D., R. Carr, R. P. McBlane, and N. Foster. 1992. The effects of varying site-water duration on the distribution of water beetle assemblages, adults and larvae (Coleoptera: Haliplidae, Dytiscidae, Hydrophilidae). Archiv für Hydrobiologie 124:281–291.Google Scholar
  27. Fernando, C. H. 1958. The Colonization of small Freshwater Habitats by Aquatic Insects. 1. General discussion, methods and colonization in the aquatic Coleoptera. Ceylon Journal of Sciences (Biological Sciences) 1:117–154.Google Scholar
  28. Fernando, C. H. 1959. The Colonization of Small Freshwater Habitats by Aquatic Insects. 2. Hemiptera (The water-bugs). Ceylon Journal of Sciences (Biological Sciences) 2:5–32.Google Scholar
  29. Fernando, C. H. and D. Galbraith. 1973. Seasonality and dynamics of aquatic insects colonizing small habitats. Verhandlungen / Internationale Vereinigung für Theoretische und Angewandte Limnologie 18:1564–1575.Google Scholar
  30. Findlay, C. S. and J. Houlahan. 1997. Anthropogenic correlates of species richness in southeastern Ontario wetlands. Conservation Biology 11:1000–1009.CrossRefGoogle Scholar
  31. Font, J. and L. Vilar. 1998. Valoració florística de les basses de la serra de l’Albera (Alt Empordà). Acta Botanica Barcinonensia 45:299–307.Google Scholar
  32. Friday, L. E. 1987. The diversity of macroin vertebrate and macrophyte communities in ponds. Freshwater Biology 18:87–104.CrossRefGoogle Scholar
  33. Fryer, G. 1988. Studies on the functional morphology and biology of the Notostraca (Crustacea. Branchiopoda). Philosophical Transactions of the Royal Society of London, Series B 321:27–124.CrossRefGoogle Scholar
  34. Galindo, M. D., A. J. Mata, N. Mazuelos, and L. Serrano. 1994. Microcrustaceans and rotifer diversity and richness relating to water temporality in dune ponds of the Doñana National Park (SW Spain). Verhandlungen / Internationale Vereinigung für Theoretische und Angewandte Limnologie 25:1350–1356.Google Scholar
  35. Ginet, R. 1977. Amphipodes troglobies d’Espagne. Crustaceana Supplement 4:173–176.Google Scholar
  36. Giudicelli, J. and A. Thiéry. 1998. La faune des mares temporaires, son originalité et son intérêt pour la biodiversité des eaux continentales méditerranéennes. Ecologia Mediterranea 24:135–143.Google Scholar
  37. Gladden, J. E. and L. A. Smock. 1990. Macroinvertebrate distribution and production on the floodplains of two lowland headwater streams. Freshwater Biology 24:533–545.CrossRefGoogle Scholar
  38. Gosner, K. L. 1960. A symplified table for staging anuran embryos and larvae with notes on identification. Herpetologica 16:183–190.Google Scholar
  39. Hartland-Rowe, R. 1972. The limnology of temporary waters and the ecology of Euphyllopoda. p. 15–31. In R. B. Clark and R. J. Wootton (eds.) Essays in Hidrobiology. University of Exeter. Exeter, UK.Google Scholar
  40. Hershey, A. E, L. Shannon, G. J. Niemi, A. R. Lima, and R. R. Regal. 1999. Effects of drought on invertebrate communities. p. 515–541. In D. Batzer, R. B. Rader and S. A. Wissinger (eds) Invertebrates in Freshwater Wetlands of North America. John Wiley and Sons, New York, NY, USA.Google Scholar
  41. Hillman, T. J. 1986. Billabongs. p. 457–470. In P. De Deckker and W. D. Williams (eds.) Limnology in Australia. Dr W Junk Publishers, Dordrecht, The Netherlands.Google Scholar
  42. Holland, C. C, J. Honea, S., E. Gwin, and M. E. Kentula. 1995. Wetland degradation and loss in the rapidly urbanizing area of Portland, Oregon. Wetlands 15:336–345.CrossRefGoogle Scholar
  43. Hughes, I. 1997. Conservation breeding of the tadpole shrimp Triops cancriformis in Britain. Aquarium Sciences and Conservation 1:5–18.CrossRefGoogle Scholar
  44. Jeffries, M. 1991. The ecology and conservation value of forestry ponds in Scotland, United Kingdom. Biological Conservation 58:191–211.CrossRefGoogle Scholar
  45. Jeffries, M. 1994. Invertebrate communities and turnover in wetlands ponds affected by drought. Freshwater Biology 32:603–612.CrossRefGoogle Scholar
  46. Jongman, R. H. G, C. J. F. Ter Braak, and O. F. R. Van Tongeren (eds.). 1987. Data Analysis in Community and Landscape Ecology. Pudoc, Wageningen. The Netherlands.Google Scholar
  47. Karaman, G. S. 1986. Discovery of Niphargus delamarei Ruffo 1954 in Spain, with first description of females (Gammaridea. Niphargidae) (Contribution to the knowledge of the amphipoda 154). Poljoprivreda i Sumarstvo 33:29–42.Google Scholar
  48. Kenk, R. 1949. The animal life of temporary and permanent ponds in southern Michigan. Miscellaneous Publications Museum of Zoology, University of Michigan 71:1–66.Google Scholar
  49. King, J. L., M. A. Simovich, and R. C. Brusca. 1996. Species richness, endemism and ecology of crustacean assemblages in northern California vernal pools. Hydrobiologia 328:85–116.CrossRefGoogle Scholar
  50. Kramer, H. 1964. Okologische Untersuchungen an temporären Tümpeln des Bonner Kottenforstes. Decheniana 117:53–132.Google Scholar
  51. Lake, P. S., I. A. E. Bayly, and D. W. Morton. 1989. The phenology of a temporary pond in western Victoria, Australia. with special reference to invertebrate succession. Archiv für Hydrobiologie 115:171–202.Google Scholar
  52. Leslie, A. J., T. L. Crisman, J. P. Prenger, and K. C. Ewel. 1997. Benthic macroin vertebrates of small Florida pondcypress swamps and the influence of dry periods. Wetlands 17:447–455.CrossRefGoogle Scholar
  53. Lindegaard, C. 1992. Zoobenthos ecology of Thingvallavatn: vertical distribution, abundance, population dynamics and production. Oikos 64:257–304.CrossRefGoogle Scholar
  54. López, J. 1979. Espermatogénesis de crustáceos inferiores. Ph.D. Dissertation. Universitat de Barcelona, Barcelona, Spain.Google Scholar
  55. MacArthur, R. H. and E. O. Wilson. 1967. The Theory of Island Biogeography. Princeton University Press, Princeton, NJ, USA.Google Scholar
  56. Magniez, G. 1976. Contribution à la connaissance de la biologie des Stenasellidae (Crustacea Isopoda Asellota des eaux souterraines). Ph.D.Dissertation. Université de Diuon. Dijon, France.Google Scholar
  57. March, F. and D. Bass. 1995. Application of island biogeography theory to temporary tools. Journal of Freshwater Ecology 10:83–85.Google Scholar
  58. Margalef, R. 1951a. Un interesante crustaceo del “Clot de Espolla”. Quaderns del Centre d’Estudis Comarcals de Banyoles 1951:3–5.Google Scholar
  59. Margalef, R. 1951b. Observaciones sobre Triops (=Apus) cancriformis de una localidad catalana. Publicaciones del Instituto de Biologia Aplicada. 9:247–251.Google Scholar
  60. Massip, J. M. 1994. Problemàtica en la reproducció i dispersió dels amfibis a l’estany o platja d’Espolla. La Llúdriga 21:3–6.Google Scholar
  61. McLachlan, A. J. 1985 What determines the species present in a rain-pool? Oikos 45:1–7.CrossRefGoogle Scholar
  62. McLachlan, A. J. and M. A. Cantrell. 1980. Survival strategies in tropical rain pools. Oecologia 47:344–351.CrossRefGoogle Scholar
  63. Médail, F., H. Michaud, J. Molina, G. Paradis, and R. Loisel. 1998. Conservation de la flore et de la végétation des mares temporaires dulçaquicoles et oligotrophes de France méditerranéenne. Ecologia Mediterranea 24:119–134.Google Scholar
  64. Metge, G. 1986. Etude des écosystèmes hydromorphes (dayas et merjas) de la Méséta Occidentale Marocaine. Ph.D. Dissertation. Université de Droit, d’Economie et Sciences d’Aix-Marseille, Marseille, France.Google Scholar
  65. Moorhead, D. L., D. L. Hall, and M. R. Willig. Succession of macroinvertebrates in playas of the Southern High Plains, USA. Journal of the North American Benthological Society 17:430–442.Google Scholar
  66. Mozley, A. 1932. A biological study of a temporary pond in Western Canada. The American Naturalist 66:235–249.CrossRefGoogle Scholar
  67. Neckles, H. A., H. R. Murkin, and J. A. Cooper. 1990. Influences of seasonal flooding on macroinvertebrate abundance in wetland habitats. Freshwater Biology 23:311–322.CrossRefGoogle Scholar
  68. Notenboom, J. 1990. Introduction to iberian groundwater amphipods. Limnética 6:165–176.Google Scholar
  69. Pearson, R. G., L. J. Benson, and R. E. Smith. 1986. Diversity and abundance of the fauna in Yuccabine Creek, a tropical rainforest stream. p. 329–342. In P. De Deckker and W. D. Williams (eds.) Limnology in Australia, Dr. W. Junk Publishers. Dordrecht, The Netherlands.Google Scholar
  70. Petridis, D. 1993. Macroinvertebrate distribution along an organic pollution gradient in Lake Lysimachia (Western Greece). Archiv für Hydrobiologie 128:367–384.Google Scholar
  71. Pla, J. M. 1980. Els Apus d’Espolla, Revista de Girona 91:171–250.Google Scholar
  72. Pretus, J. L. and F. Sabater. 1990. A new Haploginglymus (Crustacea. Ampidopoda) coexisting with Niphargus sp. in a spring south of Pyrenees (Catalonia, N.E. Spain). Stygologia 5 (3):143–152.Google Scholar
  73. Proyecto “Charcas”. 1997. Situación y primeros resultados del proyecto de catalogación de masas de agua de interés herpetológico “Proyecto Charcas”. Boletín de la Asociación Herpetológica Española 8:45–48.Google Scholar
  74. Quézel, P. 1998. La végétation des mares transitoires à Isoetes en région méditerranéenne, intérêt patrimonial et conservation. Ecologia Mediterranea 24:111–117.Google Scholar
  75. Ramsar Convention Bureau. 1992. Criteria for Identifying Wetlands of International Importance. p. 111–113. In Conserving and Managing Wetlands for Invertebrates. Council of Europe, Vaduz, Liechtenstein.Google Scholar
  76. Remy, P. 1949. Stenasellus buili n.sp. de la grotte de la Giraudasso, à Soulatgé Aude (Crust. Isopodes). Bulletin de la Societé Linnéenne de Lyon 7:153–157.Google Scholar
  77. Ribes, E. 1979. Ultrastructural del ovocito de Heterocypris incongruens Ramdohr. Ostrácodo. Master’s Thesis. Universitat de barcelona. Barcelona, Spain.Google Scholar
  78. Richter, K. O. and A. L. Azous. 1995. Amphibian occurrence and wetland characteristics in the Puget Sound Basin. Wetlands 15:305–312.CrossRefGoogle Scholar
  79. Rieradevall, M. 1991. Ecologia i producció del bentos del llac de Banyoles. Ph.D. Dissertation, Universitat de Barcelona, Barcelona, Spain.Google Scholar
  80. Rita, J. and G. Bibiloni. 1991. Zonación de la vegetación hidrófila de balsas periódicas en las zonas semiáridas de Baleares. Orsis 6:61–74.Google Scholar
  81. Ruffo, S. 1953. Anfipodi di acque interstiziali raccolti dal Dr C. Delamare Deboutteville in Francia, Spagna e Algeria. Vie et Milieu 4:669–681.Google Scholar
  82. Schneider, D. W. 1999. Influence of hydroperiod on invertebrate community structure. p. 299–318. In D. Batzer, R. B. Rader, S. A. Wissinger (eds.) Invertebrates in Freshwater Wetlands of North America. John Wiley and Sons, New York, NY, USA.Google Scholar
  83. Schneider, D. W. and T. M. Frost. 1996. Habitat duration and community structure in temporary ponds. Journal of the North American Benthological Society 15:64–86.CrossRefGoogle Scholar
  84. Schwoerbel, J. 1996. Methoden der Hydrobiologie (Süsswasserbiologie). Franckh’sche Verlagshandlung, W. Keller and Co., Stuttgart, Germany.Google Scholar
  85. Seminario sobre bases científicas para la protección de los humedales en España. 1986. Declaración de los participantes en el seminario sobre “Bases científicas para la protección de los Humedales en España”. Oecologia Aquatica 8.Google Scholar
  86. Sklar, F. H. 1985. Seasonality and community structure of the backswamp invertebrates in a Lousiana Cypress-Tupelo wetland. Wetlands 5:69–86.CrossRefGoogle Scholar
  87. Stout, V. M. 1964. Studies on temporary ponds in Canterbury. New Zealand. Verhandlungen / Internationale Vereinigung für Theoretische und Angewandte Limnologie 15:209–214.Google Scholar
  88. Sublette, J. E. and M. S. Sublette. 1967. The limnology of playa lakes on the Llano Estacado, New Mexico and Texas. The Southwestern Naturalist 12:369–406.CrossRefGoogle Scholar
  89. Szczechura, J. 1971. Seasonal changes in a reared freshwater species Cyprinotus (Heterocypris) incongruens (Ostracoda), and their importance in the interpretation of variability in fossil ostracods. Bulletin du Centre Recherche Pau-SNPA 5:191–205.Google Scholar
  90. Takahashi, F., M. Gohda, and A. Akayama. 1980. Comparison of life tables among the three species of tadpole shrimps. Japanese Journal of Applied Entomology and Zoology 24:229–233.Google Scholar
  91. Terzian, E. 1979. Ecologie des mares temporaires de l’Isoetion dans la Crau et l’Esterel (France). Master’s Thesis. Université de Droit, d’Economie et Sciences d’Aix-Marseille, Marseille, France.Google Scholar
  92. Thiéry, A. 1979. Influence de l’assechement estival sur le peuplement d’insectes aquatiques d’un marais saumatre temporaire en Crau (Bouches-du-Rhone). Annales de Limnologie 15:181–191.Google Scholar
  93. Valdecasas, A. G., A. I. Camacho, and E. Bello. 1992. Small water bodies. A neglected resource for aquatic invertebrate conservation. p. 25–27. In Conserving and managing wetlands for invertebrates. Council of Europe, Vaduz, Liechtenstein.Google Scholar
  94. Valdecasas, A. G., A. F. Lop, and A. I. Camacho. 1984. Recurrence and equilibrium of temporal ponds of a mountain range in Central Spain. Archiv für Hydrobiologie 102:43–51.Google Scholar
  95. Vila, X. and C. A. Abellà. 1990. Les sorgencies del Pla d’Usall. Quaderns del Centre d’Estudis Comarcals de Banyoles (1988–1989):7–22.Google Scholar
  96. Vila, X., C. A. Abellà, and D. Brusi. 1988. Caracterizació morfològica i limnològica del Clot d’Espolla i les sorgències del Pla d’Usall (Pla de l’Estany). Scientia Gerundensis 14:23–42.Google Scholar
  97. Vila, X., L. Vilar, and L. Polo. 1990. La vegetación macrófita del Clot d’Espolla (Girona). Scientia Gerundensis 16:205–210.Google Scholar
  98. Wellborn, G. A., D. K. Skelly, and E. E. Werner. 1996. Mechanisms creating community structure across a freshwater habitat gradient. Annual Review of Ecology and Systematics 27:337–363.CrossRefGoogle Scholar
  99. White, D. C. 1985. Lowland hardwood wetland invertebrate community and production in Missouri. Archiv für Hydrobiologie 103:509–533.Google Scholar
  100. Wiggins, G. B., R. J. Mackay, and I. M. Smith. 1980. Evolutionary and ecological strategies of animals in annual temporary pools. Archiv für Hydrobiologie Supplement 58:97–206.Google Scholar
  101. Williams, D. D. 1983. The natural history of a neartic temporary pond in Ontario with remarks on continental variation in such habitats. Internationale Revue der gesamten Hydrobiologie 68: 239–253.CrossRefGoogle Scholar
  102. Williams, D. D. 1987. The Ecology of Temporary Waters. Timber Press. Portland, OR, USA.Google Scholar
  103. Williams, D. D. 1996. Environmental constraints in temporary fresh waters and their consequences for the insect fauna. Journal of the North American Benthological Society 15:634–650.CrossRefGoogle Scholar
  104. Williams, D. D. 1997. Temporary ponds and their invertebrate communities. Aquatic Conservation: Marine and Freshwater Ecosystems 7:105–117.CrossRefGoogle Scholar
  105. Williams, W. D. 1968. The distribution of Triops and Lepidurus (Branchiopoda) in Australia. Crustaceana 14:119–126.CrossRefGoogle Scholar
  106. Williams, W. D. 1975. A note on the macrofauna of a temporary rainpool in semi-arid Western Australia. Australian Journal of Marine and Freshwater Research 26:425–429.CrossRefGoogle Scholar
  107. Williams, W. D. 2000. Biodiversity in temporary wetlands of dryland regions. Verhandlungen / Internationale Vereinigung für Theoretische und Angewandte Limnologie 27:141–144.Google Scholar
  108. Williams, W. D. and M. J. Kokkinn. 1988. The biogeographical affinities of the fauna in episodically filled salt lakes. A study of Lake Eyre South, Australia. Hydrobiologia 158:227–236.CrossRefGoogle Scholar
  109. Zandonati, R. 1998. Primi dati su incroci controllati in Eucypris virens e Heterocypris incongruens (Ostracoda) provenienti da popolazioni bisessuate. Master’s Thesis. Università degli Studi di Parma, Parma, Italy.Google Scholar

Copyright information

© Society of Wetland Scientists 2001

Authors and Affiliations

  • Dani Boix
    • 1
  • Jordi Sala
    • 1
  • Ramon Moreno-Amich
    • 1
  1. 1.Institute of Aquatic Ecology and Dept. of Environmental SciencesUniversity of Girona, Faculty of SciencesCatalunyaSpain

Personalised recommendations