, Volume 20, Issue 2, pp 357–372 | Cite as

Soil salinity and moisture gradients and plant zonation in Mediterranean salt marshes of Southeast Spain

  • José Alvarez Rogel
  • Francisco Alcaraz Ariza
  • Roque Ortiz Silla


For two years, we measured soil moisture, pH, salinity, and ion concentrations bimonthly from 55 vegetation plots in six Mediterranean salt marshes of SE Spain. Edaphic characteristics during dry and wet seasons were compared within six selected plant communities. The dominant species in each of these communities were Suaeda vera, Lygeum spartum, Limonium sp, Sarcocornia fruticosa, Halocnemum strobilaceum, and Arthrocnemum macrostachyum. Although soil salt concentrations were lower during the wet season, different patterns of temporal variation in total dissolved salts, sodium adsorption ratio, Cl, Na+, K+, Ca2+, and Mg2+ were observed in the soils occupied by different plant communities. The variation patterns for SO 4 2− were the same in all plant communities. The Ca2+/Mg2+, Ca2+/Na+, and SO 4 2− /Cl ratios increased during the wet season because of the more pronounced decrease in Cl, Na+, and Mg2+ concentrations relative to Ca2+, and SO 4 2− . Canonical correspondence analysis (CCA) related the species distribution with certain soil conditions. The edaphic variables that best explained the data were maximum soil moisture, mean K+/Na+ ratio, mean Ca2+/Mg2+ ratio, maximum pH, and maximum K+. Two different environments were identified: dry salt marsh and wet salt marsh. to examine soil ionic gradients in these two environments, two further CCA were applied. The variables that best explained soil-vegetation relationships in the dry salt marsh were mean K+/Na+ ratio, mean Ca2+/Mg2+ ratio, maximum K+, and minimum Ca2+/Na+ ratio. Some representative dry salt marsh species were Lygeum spartum, Atriplex glauca, Suaeda vera, and Frankenia corymbosa. The variables explaining the data set in the wet salt marsh were maximum sodium adsorption ratio, maximum Mg2+ content, mean Ca2+ content, and mean Ca2+/Mg2+ ratio. Species such as Arthrocnemum macrostachyum, Sarcocornia fruticosa, Juncus maritimus, and Tamarix boveana were representative of this environment.

Key Words

ionic balance soil-plant relationships canonical correspondence analysis Halocnemum strobilaceum 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature Cited

  1. Abdul-Halim, r. K.. 1986. Soil salinization and the use of halophytes for forage production in Iraq. Reclamation and Revegetation Research 5:75–82.Google Scholar
  2. Abdul-Halim, R. K. and A. A. M. Ismail. 1990. Vegetation composition of a maritime salt marsh in Qatar in relation to edaphic features. Journal of vegetation Science 1:85–88.CrossRefGoogle Scholar
  3. Adams, D. A.. 1963. Factors influencing vascular plant zonation in North Carolina salt marshes. Ecology 44:445–456.CrossRefGoogle Scholar
  4. Adams, J. B. and G. C. Bate. 1994. The effect of salinity and inundation on the estuarine macrophyte Sarcocornia perennis (Mill.) A. J. Scott. Aquatic Botany 47:341–348.CrossRefGoogle Scholar
  5. Alcaraz, F. and M. J. Delgado. 1998. Thyme-brushwood communities (‘tomillares’) of semiarid South-eastern Spain. Phytocoenologia 28:427–453.Google Scholar
  6. Alcaraz, F., R. Ortiz, and S. Hernández. 1987. Contribución al conocimiento de las relaciones suelo-agua-vegetación en un sector de las salinas de Santa Pola (Alicante). Anales de Edafologia y Agrobiología 46:273–283.Google Scholar
  7. Álvarez Rogel, J., J. Hernández, R. Ortiz, and F. Alcaraz. 1997a. Patterns of variation in soil salinity: example of a salt marsh in SE of Spain. Arid Soil Research and Rehabilitation 11:315–329.Google Scholar
  8. Álvarez Rogel, J., R. Ortiz Silla, and F. Alcaraz Ariza. 1997b. Suelos, vegetación y gradiente edáfico en un saladar costero del sureste de España. Edafologia (Boletin de la Sociedad Española de la Ciencia del Suelo) 3:257–269.Google Scholar
  9. Álvarez Rogel, J., R. Ortiz, N. Vela de Oro, and F. Alcaraz. 1998. Saline soils in semiarid southeast of Spain: new contributions to the classification systems and its relationships with halophytic vegetation. 16 World Congress of Soil Science. Montpellier, France.Google Scholar
  10. Austin, M. P. and T. M. Smith. 1989. A new model for the continuum concept. Vegetatio 83:35–47CrossRefGoogle Scholar
  11. Barbour, M. G.. 1978. The effect of competition and salinity on the growth of salt marsh plant species. Oecology 37:93–97.CrossRefGoogle Scholar
  12. Ayoub, A. T. and C. V. Malcom (eds.) 1993. Halophytes for live-stock, rehabilitation of degraded land and sequestering atmospheric carbon. United Nations Environment Programme. Environmental Guidlines, Nairobi, Kenya.Google Scholar
  13. Bertness, M. D. and A. M. Ellison. 1987. Determinations of pattern in a New England salt marsh plant community. Ecological Monographs 57:129–147.CrossRefGoogle Scholar
  14. Bertness, M. D. and G. H. Leonard. 1997. The role of positive interactions in communities: lessons from intertidal habitats. Ecology 78:1976–1989.CrossRefGoogle Scholar
  15. Bertness, M. D. and S. W. Shumway. 1993. Competition and facilitation in marsh plants. The American Naturalist 142:718–724.CrossRefPubMedGoogle Scholar
  16. Bower, C. A. and L. V. Wilcox. 1965. Soluble salts. p. 933–940. In C. A. Black (ed.) Methods of Soils Analysis Part. 2. American Society of Agronomy. Madison, WI, USA.Google Scholar
  17. Breckle, S. W.. 1990. Salinity tolerance of different halophyte types. p. 167–175. In N. El Bassam, M. Dambroth, and B. C. Longhman (eds.) Genetic Aspects of Plant Mineral Nutrition. Kluwer Academic Publishers, Dordrecht, The Netherlands.Google Scholar
  18. Callaway, R. M., S. Jones, W. R. Ferren, and A. Parikh. 1990. Ecology of a mediterranean climate estuarine wetland at Carpinteria. California: plant distribution and soil salinity in the upper marsh. Canadian Journal of Botany 68:1139–1145.Google Scholar
  19. Cantero, J. J., J. M. Cisneros, M. Zobel, and A. Cantero. 1998a. Environmental relationships of vegetation patterns in saltmarshes of central Argentina. Folia Geobotanica 33:133–145.CrossRefGoogle Scholar
  20. Cantero, J. J., R. León, J. M. Cisneros, and A. Cantero. 1998b. Habitat structure and vegetation relationships in central Argentina salt marsh landscapes. Plant Ecology 137:79–100.CrossRefGoogle Scholar
  21. Castroviejo, S., M. Laínz, G. López González, P. Monserrat, F. Muñoz Garmendia, J. Paiva, and L. Villar (Eds.) 1986–1993. Flora Ibérica, vols. 1 to 4. Real Jardín Botánico. CSIC, Madrid, Spain.Google Scholar
  22. Chang, C., T. G. Sommerfeldt, J. M. Carefoot, and G. B. Schaalje. 1983. Relationships of electrical conductivity with total dissolved salts and cation concentrations of sulfate dominant soil extracts. Canadian Journal of Soil Science 63:79–86.Google Scholar
  23. Chapman, V. J.. 1974. Salt Marshes and Salt Deserts of the World. 2nd edition. Verlag Von J. Cramer. Lehre, Germany.Google Scholar
  24. Cottrell, T. R.. 1996. Use of Plant Strategy Ordenation, DCA and ANOVA to elucidate relationships among habitats of Salix planifolia and Salix monticola. Journal of Vegetation Science 7:237–246.CrossRefGoogle Scholar
  25. Costa, M., R. M. Pérez Badía, and P. Soriano. 1987. La vegetación como elemento diagnóstico en la conservación del litoral. Colloques Phytosociologiques 15:281–298.Google Scholar
  26. Curtin, D., H. Steppuhn, and F. Selles. 1993. Plant responses to sulfate and chloride salinity: growth and ionic relations. Soil Science Society of American Journal 57:1034–1310.CrossRefGoogle Scholar
  27. Davis, M. M., S. W. Sprecher, J. S. Wakeley, and G. R. Best. 1996. Environmental gradients and identification of wetlands in North-Central Florida. Wetlands 16:512–523.Google Scholar
  28. Devitt, D., W. M. Jarrel, and K. L. Stevens. 1981. Sodium-potassium ratios in soil solution and plant response under saline conditions. Soil Science Society of American Journal 45:80–86.CrossRefGoogle Scholar
  29. Food and Agriculture Organization. 1998. World Reference Base for Soil Resources. Food and Agriculture Organization of the United Nations/International Society of Soil Science/International Soil Reference and Information Centre, Rome, Italy.Google Scholar
  30. Freitas, H. and S. W. Breckle. 1992. Importance of bladder hairs for salt tolerance of field-grown Atriplex species from a Portuguese salt marsh. Flora 187:283–297.Google Scholar
  31. García, L. V., T. Marañón, A. Moreno, and L. Clemente. 1993. Above ground biomass and species richness in a Mediterranean salt marsh. Journal of Vegetation Science 4:417–424.CrossRefGoogle Scholar
  32. Gauch, H. G. Jr. 1982. Multivariate Analysis in Community Ecology. Cambridge University Press, Cambridge, England.Google Scholar
  33. Glenn, E. P. and J. W. O’Leary. 1984. Relationships between salt concentration and water content of dicotyledonous halophytes. Plant Cell and Environment 7:253–621.Google Scholar
  34. Grattan, S. R. and C. M. Grieve. 1992. Mineral acquisition and growth response of plants grown in saline environments. Agriculture, Ecosystems and Environment 38:275–300.CrossRefGoogle Scholar
  35. Hackney, C. T., S. Brady, L. Stemmy, M. Boris, C. Dennis, T. Hancock, M. O’Bryon, C. Tylton, and E. Barbee. 1996. Does intertidal vegetation indicate specific soil and hydrological conditions? Wetlands 16:89–94.CrossRefGoogle Scholar
  36. Jager, J. C. and C. W. N. Looman. 1987. Data collection. p. 10–27. In R. H. G. Jogman, C. J. F. ter Braak, and O. F. R. van Tongeren (eds.) Data Analysis in Community and Landscape Ecology. Pudoc, Wageningen, The Netherlands.Google Scholar
  37. Kassas, M. and M. A. Zahran. 1967. On the ecology of the Red Sea littoral salt marsh, Egypt. Ecological Monographs 37:297–315.CrossRefGoogle Scholar
  38. Keiffer, C. H. and I. A. Ungar. 1997. The effects of extended exposure to hypersaline conditions on the germination of five inland halophytes species. American Journal of Botany 84:104–111.CrossRefGoogle Scholar
  39. Kent, M. and P. Cocker. 1998. Vegetation Description and Analysis. John Wiley & Sons Ltd., Chichester, England.Google Scholar
  40. Malcom, C. V.. 1986. Production from salt affected soils. Reclamation and Revegetation Research 5:343–361.Google Scholar
  41. Mass, E. V. and C. M. Grieve. 1987. Sodium induced calcium deficiency in salt-stressed corn. Plant Cell and Environment 10:559–564.Google Scholar
  42. McNeal, B. L., J. D. Oster, and J. T. Hatcher. 1970. Calculation of electrical conductivity from solution composition data as an aid to in-situ estimation of soil salinity. Soil Science 110:405–414.CrossRefGoogle Scholar
  43. Mikkelsen, V. M. 1949. Ecological studies of the salt marsh vegetation in Isefjord. Dans Botanisk Arkiv 13:1–48.Google Scholar
  44. Ortiz, R., J. Álvarez Rogel, and F. Alcaraz. 1995. Soil vegetation relationships in two coastal salt marshes of southeastern of Spain. Arid Soil Research and Rehabilitation 9:481–493.Google Scholar
  45. Peech, M.. 1965. Hydrogen-ion activity. p. 914–916. In C. A. Black (ed.) Methods of Soil Analysis Part. 2. American Society of Agronomy, Madison, WI, USA.Google Scholar
  46. Peinado, M., F. Alcaraz, and J. M. Martínez Parras. 1992. Vegetation of Southeastern Spain. J. Cramer, Berlin, Germany.Google Scholar
  47. Peinado, M., F. Alcaraz, J. L. Aguirre, J. Delgadillo, and J. Alvarez. 1995. Similarity of zonation within California-Baja California and Mediterranean salt-marshes. The Southwestern Naturalist 40:388–405.Google Scholar
  48. Pennings, S. C. and R. M. Callaway. 1992. Salt marsh plant zonation: the relative importance of competition and physical factors. Ecology 73:681–690.CrossRefGoogle Scholar
  49. Porta, J., S. Castroviejo, and M. López-Acebedo. 1980. Diagnosis of salinization an alkalinization levels in Spanish salt-affected soils by means of halophytic community studies. p. 39–47. In International Symposium on Salt Affected Soils. Paper 1.5. Central Soil Salinity Research Institute, Karnal, India.Google Scholar
  50. Porta, J., M. López Acebedo, and C. Roquero. 1994. Edafología para la agricultura y el medio ambiente. Ed. Mundi-Prensa. Madrid, España.Google Scholar
  51. Reimann, C. and S. W. Breckle. 1993. Sodium relations in Chenopodiaceae: a comparative approach. Plant Cell and Environment. 16:323–328.CrossRefGoogle Scholar
  52. Reimann, C. and S. W. Breckle. 1995. Salt tolerance and ion relations of Salsola kali L.: differences between ssp. tragus (L.) Nyman and ssp. ruthenica (Iljin) Soó. The New Phytologist 130:37–45.CrossRefGoogle Scholar
  53. Richards, L. A.. 1974. Diagnóstico y rehabilitación de suelos salinos y sódicos. Ed. Limusa, México.Google Scholar
  54. Riehl, T. E. and I. A. Ungar. 1982. Growth and ion accumulation in Salicornia europaea under saline field conditions. Oecologia 54: 193–199.CrossRefGoogle Scholar
  55. Simón, M., S. Cabezas, and P. Martino. 1994. A new method for estimation of dissolved salts in saturation extracts of soils from electrical conductivity. European Journal of Soil Science 45:153–157.CrossRefGoogle Scholar
  56. Snow, A. and S. W. Vince. 1984. Plant zonation in an Alaskan salt marsh. II. An experimental study of the role of edaphic conditions. Journal of Ecology 72:669–684.CrossRefGoogle Scholar
  57. Soil Survey Staff. 1998. Keys to Soil Taxonomy, 8th edition. U.S. Department of Agriculture, Natural Resources Conservation Service, Washington, DC, USA.Google Scholar
  58. Statistix®. 1992. Analytical Software. Joan Siegel, St. Paul, MN, USA.Google Scholar
  59. Szabolcs, I.. 1994. Salt affected soils as an ecosystems for halophytes. p. 19–24. In V. R. Squires and A. T. Malcom (eds.) Halophytes as a Resource for Livestock and for Rehabilitation of Degraded Lands. Kluwer Academic Publishers, Dordrecht, The Netherlands.Google Scholar
  60. ter Braak, C. J. F. 1986. Canonical correspondence analysis: a new eigenvector technique for multivariate direct gradient analysis. Ecology 65:1167–1179.CrossRefGoogle Scholar
  61. ter Braak, C. J. F.. 1987. The analysis of vegetation-environment relationships by canonical correspondence analysis. Vegetatio 69: 69–77.CrossRefGoogle Scholar
  62. ter Braak, C. J. F. 1997. CANOCO— a FORTRAN programs for canonical community ordination by (partial) (detrented) (canonical) correspondence analysis, principal components analysis and redundancy analysis (v. 3.15). Agricultural Mathematics Group, Wageningen, The Netherlands.Google Scholar
  63. ter Braak, C. J. F. and C. Prentice. 1988. A theory of gradient analysis. Advances in Ecological Research. 18:271–317.CrossRefGoogle Scholar
  64. Tutin, T. G., V. H. Heywood, N. A. Burges, D. M. Moore, D. H. Valentine, S. M. Walters, and A. Webb (eds.). 1964–1980. Flora Europaea. Vols. 1–5. Cambridge University Press, New York, NY, USA.Google Scholar
  65. Valdés, B., S. Talavera, and E. Fernández Galiano. 1987. Flora Vascular de Andalucía Occidental. Vols. 1–3. Ketres, Barcelona. Spain.Google Scholar
  66. Wang, X. Y. and R. E. Redman. 1996. Adaptation to salinity in Hordeum jubatum L. populations studied using reciprocal transplants. Vegetatio 123:65–71.CrossRefGoogle Scholar
  67. Westhoff, V. and E. Van der Maarel. 1978. The Braun Blanquet Approach. p. 287–399. In R. H. Whittaker (ed.) Classification of Plant Communities, 2nd ed. Dr. Junk, The Hague, The Netherlands.Google Scholar
  68. Williamson, D. R.. 1986. The hydrology of salt affected soils in Australia. Reclamation and Revegetation Research 5:181–196.Google Scholar
  69. Woerner, L. S. and C. T. Hackney. 1997. Distribution of Juncus roemerianus in North Carolina tidal marshes: the importance of physical and biotic variables. Wetlands 17:284–291.CrossRefGoogle Scholar
  70. Zedler, J. B.. 1996. Tidal Wetland Restoration: A Scientific Perspective and Southern California Focus. California Sea Grant College System. University of California, La Jolla, CA, USA. Report No. T-038.Google Scholar
  71. Zedler, J. B.. 1984. The ecology of southern California coastal salt marshes: a community profile. U.S. Fish and Wildlife Service, Office of Biological Services, Washington, DC, USA. FWS/OBS-81/54. Second reprint with corrections.Google Scholar
  72. Zogg, G. P. and B. V. Barnes. 1995. Ecological classification and analysis of wetlands ecosystems, northern Lower Michigan, U.S.A. Canadian Journal Forest Research 25:1865–1875.CrossRefGoogle Scholar
  73. Zurayk, R. A. and R. Baalbaki. 1996. Inula crithmoides: a candidate plant for saline agriculture. Arid Soil Research and Rehabilitation 10:213–223.Google Scholar

Copyright information

© Society of Wetland Scientists 2000

Authors and Affiliations

  • José Alvarez Rogel
    • 1
  • Francisco Alcaraz Ariza
    • 2
  • Roque Ortiz Silla
    • 3
  1. 1.Departamento de Producción Agraria Área de Edafología y Química AgrícolaE.T.S. de Ingeniería Agronómica Universidad Politécnica de CartagenaMurciaSpain
  2. 2.Departmento de Biología VegetalUniversidad de MurciaMurciaSpain
  3. 3.Departamento de Química Agrícola, Geología y EdafologíaUniversidad de MurciaMurciaSpain

Personalised recommendations