, Volume 20, Issue 1, pp 200–204 | Cite as

Mycorrhizal fungi associated with plants in ground-water fed wetlands

  • Stephen D. Turner
  • James P. Amon
  • Robert M. Schneble
  • Carl F. Friese


Studies have documented the flora, fauna, and soils of ground-water fed wetlands, but very little is known about their plant-mycorrhizal associations. This study was designed to determine the presence of arbuscular mycorrhizal (AM) fungi in several wetland plant species associated with fens in west central Ohio, USA. Roots of wetland plant species collected at four sites had mycorrhizal fungal colonization levels ranging from O to 61.5%. Mycorrhizal associations occurred in plants of all wetland categories (OBL, FACW, FAC). We propose that these peatland have lower nutrient availability than some other wetlands and thus may be more dependent on these root fungi for nutrient uptake. Mycorrhizal fungi may be an important consideration in the functional restoration of ground-water driven wetland systems.

Key words

wetland wet prairie fen peatland arbuscular mycorrhizae fungi endomycorrhiza 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature cited

  1. Alen, M. F. 1991. The Ecology of Mycorrhizae. Cambridge University Press, Cambridge, UK.Google Scholar
  2. American Public Health Association. 1992. Standard Methods for the Examination of Water and Waste Water, 18th ed. American Public Health Association, Washington, DC, USA.Google Scholar
  3. Amijee, F., D. P. Stribley and P. W. Lane. 1993. The susceptibility of roots to infection by an arbuscular mycorrhizal fungus in relation to age and phosphorus supply. New Phytologist 125:581–586.CrossRefGoogle Scholar
  4. Anderson, R. C., A. E. Liberta and L. A. Dickman 1984. Interaction of vascular plants and vesicular-arbuscular mycorrhizal fungi across a soil moisture-nutrient gradient. Oecologia 64:111–117.CrossRefGoogle Scholar
  5. Andreas, B. K. 1985. The relationship between Ohio peatland distribution and buried river valleys. Ohio Journal of Science 85:116–125.Google Scholar
  6. Aziz, T., D. M. Sylvia and R. F. Doren. 1995. Activity and species composition of arbuscular mycorrhizal fungi following soil removal. Ecological Applications 5:775–784.CrossRefGoogle Scholar
  7. Bagyaraj, D. J., A. Manjynath and R. B. Patil 1979. Occurrence of vesicular-arbuscular mycorrhizas in some tropical aquatic plants. Transactions of the British Mycological Society 72:165–166.CrossRefGoogle Scholar
  8. Beltman, B., A. M. Kooijman, G. Rouwenhorst and M. Van-Kerkhoven. 1996. Nutrient availability and plant growth limitation in blanket mires in Ireland. Biology and Environment, Proceedings of the Royal Irish Academy 96:77–87Google Scholar
  9. Braun, E. L. 1967. The Monocotyledoneae. The Ohio State University Press. Columbus, OH, USA.Google Scholar
  10. Brundrett, M. 1991. Mycorrhizas in natural ecosystems. Advances in Ecological Research 21:171–313.CrossRefGoogle Scholar
  11. Brundrett, M. L. 1994. Clearing and staining mycorrhizal roots. p. 51–61. In M.L. Brundrett, L. Melville, and L. Peterson (eds.) Practical Methods in Mycorrhizal Research. Mycologue Publications, Waterloo, ON, Canada.Google Scholar
  12. Carpenter, Q. J. 1995. Toward a new definition of calcareous fen for Wisconsin (USA). Ph. D. Dissertation. University of Wisconsin-Madison, Madison, WI, USA.Google Scholar
  13. Cooke, J. C. and M. W. Lefor. 1990. Comparison of vesicular-arbuscular mycorrhizae in plants from disturbed and adjacent undistrurbed regions of a coastal salt marsh in Clinton, Connecticut, USA. Environmental Management 14:131–137.CrossRefGoogle Scholar
  14. Cooke, J. C. and M. W. Lefor. 1998. The mycorrhizal status of selected plant species from Connecticut wetlands and transition zones. Restoration Ecology 6:214–222.CrossRefGoogle Scholar
  15. Farmer, A. M. 1985. The occurrence of vesicular-arbuscular mycorrhiza in iseotid-type submerged aquatic macrophytes under naturally varying condition. Aquatic Botany 21:245–249.CrossRefGoogle Scholar
  16. Friese, C. F., S. J. Morris and M. F. Allen. 1997. Disturbance in natural ecosystems: Scaling from fungal diversity to ecosystem functioning. p. 47–65. In D. T. Wicklow and B. Soderstrom, (eds.) The Mycota. IV. Environmental and Microbial Relationships. Spinger-Verlag, Berlin, Germany.Google Scholar
  17. Harley, J. L. 1969. The Biology of Mycorrhiza. Leonard Hill, London, UK.Google Scholar
  18. Khan, A. G. 1974. The occurrence of mycorrhizas in halophytes, hydrophytes and xerophytes, and of endogone spores in adjacent soils. Journal of General Microbiology 81:7–14.Google Scholar
  19. Koske, R. E. and B. Tessier. 1983. A convenient permanent slide mounting medium. Mycological Society of America Newsletter 34:59.Google Scholar
  20. Lindsay, W. L. 1979. Chemical equilibria in soils. Wiley, New York, NY, USA.Google Scholar
  21. Mitsch, W. J. and J. G. Gosselink. 1993. Wetlands, 2nd ed. Van Nostrand Reinhold, New York, NY, USA.Google Scholar
  22. Newman, E. I. and P. Reddell. 1987. The distribution of mycorrhizas among families of vascular plants. New Phytologist 106:475–751.CrossRefGoogle Scholar
  23. Patrick, W. H., Jr. and R. A. Khalid. 1974. Phosphate release and sorption by soils and sediments: effect of aerobic and anaerobic conditions. Science 186:53–55.CrossRefPubMedGoogle Scholar
  24. Powell, C. L. 1975. Rushes and sedges are non-mycotrophic. Plant and Soil 42:481–484.CrossRefGoogle Scholar
  25. Ragupathy, S., V. Mohankumar, and A. Mahadevan. 1990. Occurrence of vesicular-arbuscular mycorrhizae in tropical hydrophytes. Aquatic Botany 36:287–292.CrossRefGoogle Scholar
  26. Reed, P. B., Jr. 1997. Revision of the national list of plant species that occur in wetlands. Department of the Interior, U.S. Fish and Wildlife Service, Washington DC, USA.Google Scholar
  27. Rickerl, D. H., F. O. Sancho, and S. Annath. 1994. Vesicular-arbuscular endomycorrhizal colonization of wetland plants. Journal of Environmental Quality 23:913–916.Google Scholar
  28. Schneble, R. M. 1997. The impact of disturbance on the structure-function relationships of wetland ecosystems: Implications for ecological restoration. M. S. Thesis. University of Dayton, Dayton, OH, USA.Google Scholar
  29. Smith, S. E. and D. J. Read. 1997. Mycorrhizal Symbiosis. Academic Press, San Diego, CA, USA.Google Scholar
  30. Solaiman, M. Z. and H. Hirata. 1996. Effectiveness of arbuseular mycorrhizal colonization at nursery-stage on growth and nutrition in wetland rice (Oryza sativa L.) after transplanting under different soil fertility and water regimes. Soil Science & Plant Nutrition 42:561–571.Google Scholar
  31. Sondergaard, M. and S. Laegaard. 1977. Vesicular-arbuscular mycorrhiza in some quatic vascular vascular plants. Nature 268:222–223.CrossRefGoogle Scholar
  32. Thormann, M. N., R. S. Currah, and S. E. Bayley. 1999. The mycorrhizal status of the dominant vegetation along a peatland gradient in southern boreal Alberta, Canada. Wetlands 19:438–450.Google Scholar
  33. Turner, S. D. and C. F. Friese. 1998. Plant-mycorrhizal community dynamics associated with a moisture gradient within a rehabilitated prairie fen: Restoration implications. Restoration Ecology 6:44–51.CrossRefGoogle Scholar
  34. van Duin, W. E., J. Rozema, and W. H. O. Ernst. 1989. Seasonal and spatial variation in the occurrence of vesicular-arbuscular (VA) mycorrhiza in salt marsh plants. Agriculture, Ecosystems and Environment 29:107–110.CrossRefGoogle Scholar
  35. Wetzel, P. R. and A. G. van der Valk. 1996. Vesicular arbuscular mycorrhizae in prairie pothole wetlands vegetation in Iowa and North Dakota. Canadian Journal of Botany 74:883–890.CrossRefGoogle Scholar

Copyright information

© Society of Wetland Scientists 2000

Authors and Affiliations

  • Stephen D. Turner
    • 1
  • James P. Amon
    • 2
  • Robert M. Schneble
    • 1
  • Carl F. Friese
    • 1
  1. 1.Department of Biology, Environmental Ecology Research GroupUniversity of DaytonDaytonUSA
  2. 2.Department of Biological SciencesWright State UniversityDaytonUSA

Personalised recommendations