Skip to main content
Log in

Restoring assemblages of salt marsh halophytes in the presence of a rapidly colonizing dominant species

  • Published:
Wetlands Aims and scope Submit manuscript

Abstract

Establishing species-rich plant communities is a common goal of habitat restoration efforts, but not all species within a target assemblage have the same capacity for recruitment and survival in created habitats. We investigated the development of a tidal salt marsh plant community in the presence of a rapidly colonizing dominant species, Salicornia virginica, in a newly created habitat in Mugu Lagoon, California, USA. We planted rooted cuttings of S. virginica, Distichlis spicata, Jaumea carnosa, and Frankenia salina in single- and mixed-species stands, where each species was planted alone or in combination with S. virginica in 4 m2 plots. We measured species percent cover, recruit density, canopy structure, and aboveground biomass after three growing seasons. When planted alone, S. virginica achieved the greatest cover, up to 70%, followed by J. carnosa (55%), F. salina (35%), and D. spicata (12%). Total percent cover was about 30% lower than in a reference site. For each species, average percent cover and aboveground biomass per plant were generally similar between single-species and mixed planting treatments, suggesting that on the time scale of this study, competition between species was weak. Canopy structure (height, number of layers) and total aboveground biomass of all species were largely unaffected by planting treatments, although S. virginica was shorter when planted with J. carnosa. Salicornia virginica recruits constituted approximately 98% of the cover of seedling recruits into the created site. Despite intense S. virginica recruitment, our intervention in the successional process by planting species with poorer colonization abilities, particularly J. carnosa and F. salina, prevented S. virginica from completely dominating the canopy, thus increasing vascular plant richness in the created site. Artificially increased richness may enhance some ecosystem functions and create a seed source to facilitate the persistence of a diverse plant assemblage in restored sites.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

Literature Cited

  • Barbour, M. G. and C. B. Davis. 1970. Salt tolerance of five California salt marsh plants. American Midland Naturalist 84: 262–265.

    Article  Google Scholar 

  • Bertness, M. D. and A. M. Ellison. 1987. Determinants of patterns in a New England salt marsh plant community. Ecological Monographs 57: 129–147.

    Article  Google Scholar 

  • Boyer, K. E. and P. Fong. 2005. Co-occurrence of habitat-modifying invertebrates: effects on structural and functional properties of a created salt marsh. Oecologia 143: 619–628.

    Article  PubMed  Google Scholar 

  • Boyer, K. E., P. Fong, R. R. Vance, and R. F. Ambrose. 2001. Salicornia virginica in a southern California salt marsh: seasonal patterns and a nutrient-enrichment experiment. Wetlands 21: 315–326.

    Article  Google Scholar 

  • Brady, V. J., B. J. Cardinale, J. P. Gathman, and T. M. Burton. 2002. Does facilitation of faunal recruitment benefit ecosystem restoration? An experimental study of invertebrate assemblages in wetland mesocosms. Restoration Ecology 10: 617–626.

    Article  Google Scholar 

  • Budelsky, R. A. and S. M. Galatowitsch. 2000. Effects of water regime and competition on the establishment of a native sedge in restored wetlands. Journal of Applied Ecology 37: 971–985.

    Article  Google Scholar 

  • Callaway, J. C., G. Sullivan, and J. B. Zedler. 2003. Species-rich plantings increase biomass and nitrogen accumulation in a wetland restoration experiment. Ecological Applications 13: 1626–1639.

    Article  Google Scholar 

  • Cione, N. K., P. E. Padgett, and E. B. Allen. 2002. Restoration of a native shrubland impacted by exotic grasses, frequent fire, and nitrogen deposition in southern California. Restoration Ecology 10: 376–384.

    Article  Google Scholar 

  • Covin, J. D. and J. B. Zedler. 1988. Nitrogen effects on Spartina foliosa and Salicornia virginica in the salt marsh at Tijuana Estuary, California. Wetlands 8: 51–66.

    Article  Google Scholar 

  • Dahl, T. E. 1990. Wetlands losses in the United States 1780s to 1980s. U.S. Department of the Interior, Fish and Wildlife Service, Washington, DC, USA.

    Google Scholar 

  • Dobson, A. P., A. D. Bradshaw, and A. J. M. Baker. 1997. Hopes for the future: restoration ecology and conservation biology. Science 277: 515–522.

    Article  CAS  Google Scholar 

  • Dyer, A. R. and K. J. Rice. 1997. Intraspecific and diffuse competition: the response of Nassella pulchra in a California grassland. Ecological Applications 7: 484–492.

    Article  Google Scholar 

  • Ehrenfeld, J. G. and L. A. Toth. 1997. Restoration ecology and the ecosystem perspective. Restoration Ecology 5: 307–317.

    Article  Google Scholar 

  • Emery, N. C., P. J. Ewanchuk, and M. D. Bertness. 2001. Competition and salt-marsh plant zonation: stress tolerators may be dominant competitors. Ecology 82: 2471–2485.

    Google Scholar 

  • Engelhardt, K. A. M. and M. E. Ritchie. 2001. Effects of macrophyte species richness on wetland ecosystem functioning and services. Nature 411: 687–689.

    Article  CAS  PubMed  Google Scholar 

  • Esselink, P., W. Zijlstra, K. S. Dijkema, and R. van Diggelen. 2000. The effects of decreased management on plant-species distribution patterns in a salt marsh nature reserve in the Wadden Sea. Biological Conservation 93: 61–76.

    Article  Google Scholar 

  • Ewel, J. J., M. J. Mazzarino, and C. W. Berish. 1991. Tropical soil fertility changes under monocultures and successional communities of different structure. Ecological Applications 1: 289–302.

    Article  Google Scholar 

  • Fraser, A. and K. Kindscher. 2001. Tree spade transplanting of Spartina pectinata (Link) and Eleocharis macrostachya (Britt.) in a prairie wetland restoration site. Aquatic Botany 71: 297–304.

    Article  Google Scholar 

  • Hector, A., K. Dobson, A. Minns, E. Bazeley-White, and J. H. Lawton. 2001. Community diversity and invasion resistance: an experimental test in a grassland ecosystem and a review of comparable studies. Ecological Research 16: 819–831.

    Article  Google Scholar 

  • Hopkins, D. R. and V. T. Parker. 1984. A study of the seed bank of a salt marsh in northern San Francisco Bay. American Journal of Botany 71: 348–355.

    Article  Google Scholar 

  • Huddleston, R. T. and T. P. Young. 2004. Spacing and competition between planted grass plugs and preexisting perennial grasses in a restoration site in Oregon. Restoration Ecology 12: 546–551.

    Article  Google Scholar 

  • Huiskes, A. H. L., B. P. Koutstaal, P. M. J. Herman, W. G. Beeftink, M. M. Markusse, and M. W. De. 1995. Seed dispersal of halophytes in tidal salt marshes. Journal of Ecology 83: 559–567.

    Article  Google Scholar 

  • Jefferies, R. L., A. J. Davy, and T. Rudmik. 1981. Population biology of the salt marsh annual Salicornia europaea agg. Journal of Ecology 69: 17–31.

    Article  Google Scholar 

  • Keer, G. H. and J. B. Zedler. 2002. Salt marsh canopy architecture differs with the number and composition of species. Ecological Applications 12: 456–473.

    Article  Google Scholar 

  • Knops, J. M. H., D. Tilman, N. M. Haddad, S. Naeem, C. E. Mitchell, J. Haarstad, M. E. Ritchie, K. M. Howe, P. B. Reich, E. Siemann, and J. Groth. 1999. Effects of plant species richness on invasion dynamics, disease outbreaks, insect abundances and diversity. Ecology Letters 2: 286–293.

    Article  Google Scholar 

  • Lindig-Cisneros, R. and J. B. Zedler. 2002. Halophyte recruitment in a salt marsh restoration site. Estuaries 25: 1174–1183.

    Article  Google Scholar 

  • Marshall, R. M. and S. E. Reinert. 1990. Breeding ecology of seaside sparrows in a Massachusetts salt marsh. Wilson Bulletin 102: 501–513.

    Google Scholar 

  • Naeem, S., L. J. Thompson, S. P. Lawler, J. H. Lawton, and R. M. Woodfin. 1994. Declining biodiversity can alter the performance of ecosystems. Nature 368: 734–737.

    Article  Google Scholar 

  • Onuf, C. P. 1987. The ecology of Mugu Lagoon, California: an estuarine profile. U.S. Fish and Wildlife Service, Washington, DC, USA. 85(7.15).

    Google Scholar 

  • Palmer, M. A., R. F. Ambrose, and N. L. Poff. 1997. Ecological theory and community restoration ecology. Restoration Ecology 5: 291–300.

    Article  Google Scholar 

  • Pennings, S. C. and R. M. Callaway. 1992. Salt marsh plant zonation: the relative importance of competition and physical factors. Ecology 73: 681–690.

    Article  Google Scholar 

  • Peterson, C. H. and R. N. Lipcius. 2003. Conceptual progress towards predicting quantitative ecosystem benefits of ecological restorations. Marine Ecology Progress Series 264: 297–307.

    Article  Google Scholar 

  • Rand, T. A. 2000. Seed dispersal, habitat suitability and the distribution of halophytes across a salt marsh tidal gradient. Journal of Ecology 88: 608–621.

    Article  Google Scholar 

  • Robson, M. J. and J. E. Sheehy. 1981. Leaf area and light interception. p. 115–140, In J. Hodgson, R. D. Baker, A. Davies, A. S. Laidlaw, and L. D. Leaver (eds.) Sward Measurement Handbook. British Grassland Society, London, UK.

    Google Scholar 

  • Rozas, L. P. and D. J. Reed. 1993. Nekton use of marsh-surface habitats in Louisiana (USA) deltaic salt marshes undergoing submergence. Marine Ecology Progress Series 96: 147–157.

    Article  Google Scholar 

  • Seabloom, E. W. and A. G. van der Valk. 2003. Plant diversity, composition, and invasion of restored and natural prairie pothole wetlands: implications for restoration. Wetlands 23: 1–12.

    Article  Google Scholar 

  • Silliman, B. R. and M. D. Bertness. 2004. Shoreline development drives invasion of Phragmites austrails and the loss of plant diversity on New England salt marshes. Conservation Biology 18: 1424–1434.

    Article  Google Scholar 

  • Suding, K. N., K. L. Gross, and G. R. Houseman. 2004. Alternative states and positive feedbacks in restoration ecology. Trends in Ecology and Evolution 19: 46–53.

    Article  PubMed  Google Scholar 

  • Sullivan, G. 2001. Establishing vegetation in restored and created coastal wetlands. p. 119–155, In J. B. Zedler (ed.) Handbook for Restoring Tidal Wetlands. CRC Press, Washington, DC, USA.

    Google Scholar 

  • Sullivan, M. J. and C. A. Moncreiff. 1988. Primary production of edaphic algal communities in a Mississippi salt marsh. Journal of Phycology 24: 49–58.

    Google Scholar 

  • Tilman, D. 1996. Biodiversity: population versus ecosystem stability. Ecology 77: 350–363.

    Article  Google Scholar 

  • Tilman, D. and J. A. Downing. 1994. Biodiversity and stability in grasslands. Nature 367: 363–365.

    Article  Google Scholar 

  • Tilman, D., P. B. Reich, J. Knops, D. Wedin, T. Mielke, and C. Lehman. 2001. Diversity and productivity in a long-term grassland experiment. Science 294: 843–845.

    Article  CAS  PubMed  Google Scholar 

  • Warren, J. M. 2000. The role of white clover in the loss of diversity in grassland habitat restoration. Restoration Ecology 8: 318–323.

    Article  Google Scholar 

  • Wilson, J. W. 1959. Analysis of the spatial distribution of foliage by two-dimensional point quadrats. New Phytologist 58: 92–101.

    Article  Google Scholar 

  • Zedler, J. B., J. C. Callaway, and G. Sullivan. 2001. Declining biodiversity: why species matter and how their functions might be restored in Californian tidal marshes. Bioscience 51: 1005–1017.

    Article  Google Scholar 

  • Zedler, J. B., H. Morzaria-Luna, and K. Ward. 2003. The challenge of restoring vegetation on tidal, hypersaline substrates. Plant and Soil 253: 259–273.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Armitage, A.R., Boyer, K.E., Vance, R.R. et al. Restoring assemblages of salt marsh halophytes in the presence of a rapidly colonizing dominant species. Wetlands 26, 667–676 (2006). https://doi.org/10.1672/0277-5212(2006)26[667:RAOSMH]2.0.CO;2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1672/0277-5212(2006)26[667:RAOSMH]2.0.CO;2

Key Words

Navigation