Economic Botany

, Volume 60, Issue 2, pp 121–129 | Cite as

Morphometric analysis of inflorescence phytoliths produced byAvena sativa L. andAvena strigos schreb



Morphometric analysis, the study of measurements of size and shape, has the potential to be an effective tool for phytolith analysis. This study reports the first attempt to apply the methodology to oats. In particular, this study was designed to determine if morphometric analysis could adequately discriminate between phytoliths produced in the inflorescence bracts of two species of oats, Avena sativa L. and Avena strigosa Schreb. Results indicate that while the taxa produce the same types of phytoliths, those phytoliths have significantly different measurements of size and shape. This suggests the technique has the potential to become a powerful research tool for investigators working in the wide variety of disciplines that utilize phytolith analysis.

Key Words

Phytoliths morphometric analysis oats Avena sativa Avena strigosa 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature Cited

  1. Aston, M. J., and M.M. Jones. 1976. A study of the transpiration surfaces ofAvena sterilis L. var. Algerian leaves using monosilicic acid as a tracer for water movement. Planta 130(2):121–9.CrossRefGoogle Scholar
  2. Baker, G. 1959. Hook-shaped opal phytoliths in the epidermal cells of oats. Australian Journal of Botany 8:69–74.CrossRefGoogle Scholar
  3. Ball, T.B., J. S. Gardner, and N. Anderson. 1999. Identifying inflorescence phytoliths from selected species of wheat (Triticum monoccum, T. dicoc-con, T. dicoccoides, andT. aestivum) and barley (Hordeum vulgare andH. spontaneum). American Journal of Botany 86(11): 1615–1623.PubMedCrossRefGoogle Scholar
  4. Bennett, D.M. 1982. Silicon deposition in the roots ofHordeum sativum, Avena sativa L. andTriticum aestivum L. Annals of Botany 50(2):239–246.Google Scholar
  5. Berlin, A.M., T.B. Ball, R. Thompson, D. Kittleson, and S.C. Herbert. 2003. Ptolemaic agriculture, “Syrian wheat,“ andTriticum aestivum. Journal of Archaeological Science 30:115–121.CrossRefGoogle Scholar
  6. Dennell, R.W. 1992. The origins of agriculture in Europe. Pages 71–100 in C. Wesley Cowan and Patty Jo Watson, eds. The origins of agriculture: An international perspective. Smithsonian Institution Press, Washington, D.C.Google Scholar
  7. Harlan, J.R. 1992. Indigenous African agriculture. Pages 59–70 in C. Wesley Cowan and Patty Jo Watson, eds. The origins of agriculture: An inter-national perspective. Smithsonian Institution Press, Washington, D.C.Google Scholar
  8. Hodson, M.J., P.J. White, A. Mead, and M.R. Broadley. (Accepted, n.d.). Phylogenetic variation in the silicon composition of plants. Annals of Botany.Google Scholar
  9. Jones, L.H.P., A. A. Milne, and S.M. Wadham. 1963. Studies of silica in the oat plant II. Distribution of the silica in the plant. Plant and Soil 18(3):358–371.CrossRefGoogle Scholar
  10. — and K. A. Handreck. 1965. Studies of silica in the oat plant III. Uptake of silica from soils by the plant. Plant and Soil 23(1):79–96.CrossRefGoogle Scholar
  11. Kaplan, L., M.B. Smith, and L.A. Sneddon. 1992. Cereal grain phytoliths of Southwest Asia and Europe. Pages 149–174 in G. Rapp and S.C. Mulholland, eds. Phytolith systematics. Plenum Press, New York and London.Google Scholar
  12. Kaufman, P.B., W.C. Bigelow, L.B. Petering, and F.B. Drogosz. 1969. Silica in developing epider mis cells ofAvena internodes: Electron micro-probe analysis. Science 166:1015–1017.CrossRefGoogle Scholar
  13. Madella, M., A. Alexandre, and T. Ball. 2005. Inter national code for phytolith nomenclature 1.0. An nals of Botany 10.1093/aob/mcil72.Google Scholar
  14. Pearsall, D.M., D.R. Piperno, E.H. Dinan, M. Um-lauf, Z. Zhao, and R. A. Benefer, Jr. 1995. Distinguishing rice (Oryza sativa Poaceae) from wildOryza species through phytolith analysis: Results of preliminary research. Economic Botany 49:183–196.Google Scholar
  15. Soni, S.L., P.B. Kaufman, and W.C. Bigelow. 1971. Electron microprobe analysis of the distribution of silicon in leaf epidermal cells of the oat plant. Phytomorphology 20:350–363.Google Scholar
  16. —, P.B. Kaufman, and W.C. Bigelow. 1972. Regulation of silicon deposition inAvena inter-nodal epidermis by gibberellic acid and sucrose. Journal of Experimental Botany 23(76):787–791.CrossRefGoogle Scholar
  17. Weibul, J., L.L.J. Bojesen, and V. Rasomavièvius. 2002.Avena strigosa in Denmark and Lithuania: Prospects for in situ conservation. Plant Genetic Resources Newsletter 131:1–6.Google Scholar
  18. Zhao, Z., D.M. Pearsall, A.B. Benefe, Jr., and D.R. Piperno. 1998. Distinguishing rice (Oryza sativa Poaceae) from wildOryza species through phy-tolith analysis, II: Finalized method. Economic Botany 52:134–135.Google Scholar
  19. Zhou, X., E.N. Jellen, and J.P. Murphy. 1999. Pro-genitor germplasm of domesticated hexaploid oat. Crop Science 39(4):1208–1214.Google Scholar

Copyright information

© New York Botanical Garden Press 2006

Authors and Affiliations

  1. 1.Dept. de Prehistòria, Història Antiga i ArqueologiaUniversitat de BarcelonaBarcelonaSpain
  2. 2.Department of Ancient Scrip-ture, 375A JSBBrigham Young UniversityProvoUSA

Personalised recommendations