Economic Botany

, Volume 58, Supplement 1, pp S135–S146 | Cite as

A test for molecular identification of Japanese archaeological beans and phylogenetic relationship of wild and cultivated species of subgenus Ceratotropis(genus Vigna, apilionaceae) using sequence variation in two non-coding regions of the Trnl and trnf genes

  • Azusa Yano
  • Kentaro Yasuda
  • Hirofumi Yamaguchi


Phylogenetic relationships were analyzed in nine species belonging to subgenus Ceratotropis (genus Vigna, Papilionaceae), including cultivated, weedy and wild races of azuki bean (V. angularis), and five outgroup species by sequences in the trnL intron and trnL-F intergenic spacer of cpDNA, in order to perform molecular identification of archaeological beans in Japan. The modern species of subgenus Ceratotropis had similar sequences in the two non-coding regions ranging from 952 bp to 1027 bp with 36 substitutions and 6 indels. The strict consensus phylogenetic tree confirmed the monophyly of the Ceratotropis and two subordinate groups: the azuki bean group and the mung bean group. The azuki bean group was comprised of three races of azuki bean, rice bean (V. umbellata), V. nakashimae and V. minima var. minor. The mung bean group was comprised of mung bean (V. radiata), blackgram (V. mungo), moth bean (V. aconitifolia), V. trilobata and V. reflexo-pilosa. All accessions of V. angularis, including cultivated, weedy and wild azuki beans, shared the same sequence with a specific deletion of 51 bp. Since this deletion was confirmed in the archaeological beans excavated from the ruins during the Yayoi (ca. 2300 yrb.p.), Satsumon (650 yr b.p.), and Edo (155 yr b.p.) periods of Japan, it is suggested here that the azuki bean has long been utilized in Japan.

Key Words

Ceratotropis Vigna angulari azuki bean phylogenetic relationship trnL intron trnL-F intergenic spacer archaeological remains 

Literature cited

  1. Asmussen, C B., and M. W. Chase. 2001. Coding and noncoding plastid DNA in palm systematics. American Journal of Botany 88:1103–1117.PubMedCrossRefGoogle Scholar
  2. Brouat, C, L. Gielly, and D. McKey. 2001. Phylogenese elationships in the genus Leonardoxa (Leguminosae: Caesalpinioideae) inferred from chloroplast trnL intron and trnL-trnF intergenic spacer sequences. American Journal of Botany 88:143–149.PubMedCrossRefGoogle Scholar
  3. Clawford, G. W. 1984. Sakushu-Kotoni-River plant remains. Pages 4–21 in M. Yoshizaki, ed., Sakushu-Kotoni River Site: The Ezo-Haji Component Plant Remains. Faculty of Literature, Hokkaido University.Google Scholar
  4. Deakin, W. J., P. Roweley-Conwy, and C. H. Shaw. 1998. The sorghum of Qasr Ibrim: Reconstructing DNA templates from ancient seeds. Ancient Biomolecules 2:117–124.Google Scholar
  5. Deilaporta S. L., J. Wood, and J. B. Hicks. 1983. A plant DNA minipreparation: Version II. Plant Molecular Biology Reporter 1:19–21.CrossRefGoogle Scholar
  6. Doyle, J. J., and J. L. Doyle. 1987. A rapid DNA isolation procedure for small quantities of fresh leaf tissue. Phytochemical Bulletin 19:11–15.Google Scholar
  7. Egawa, Y., and N. Tomooka. 1994. Phylogenetic differentiation of Vigna species in Asia. JIRCAS International Symposium, Series 2:112–120.Google Scholar
  8. Fatokun, C. A., D. Danesh, N. D. Young, and E. L. Stewart. 1993. Molecular taxonomic relationships in the genus Vigna based on RFLP analysis. Theoretical and Applied Genetics 86:97–104.CrossRefGoogle Scholar
  9. Felsenstein, J. 1985. Confidence limits on phylogenies: An approach using the bootstrap. Evolution 39:783–791.CrossRefGoogle Scholar
  10. Farries, J. S., M. Kallersjio, A. G. Kluge, and C. Bult. 1995. Testing significance of incongruence. Cladistics 10:315–319.CrossRefGoogle Scholar
  11. Fujii, N., K. Ueda, Y. Watano, and T. Shimizu. 1997. Intraspecific sequence variation of chloroplast DNA in Pedicularis chamissonis Steven (Scrophulariaceae) and geographic structuring of the Japanese ‘alpine’ plants. Journal of Plant Research 110:195–207.CrossRefGoogle Scholar
  12. Kaga, A., N. Tomooka, Y. Egawa, K. Hosaka, and O. Kamijima. 1996. Species relationships in the subgenus Ceratotropis (genus Vigna) as revealed by RAPD analysis. Euphytica 88:17–24.CrossRefGoogle Scholar
  13. Kato, S., H. Yamaguchi, Y. Shimamoto, and T. Mikami. 2000. The chloroplast genomes of azuki bean and its close relatives: A deletion mutation found in weed azuki bean. Hereditas 132:43–48.PubMedCrossRefGoogle Scholar
  14. Kimura, M. 1980. A simple method for estimating evolutionary rate of base substitutions through comparative studies of nucleotide sequences. Journal of Molecular Evolution 16:111–120.PubMedCrossRefGoogle Scholar
  15. Kumar, S., K. Tamura, I. B. Jakobsen, and M. Nei. 2001. MEGA2: Molecular Evolutionary Genetics Analysis software, Bioinformatics (submitted).Google Scholar
  16. Lumpkin, T. A., and D. C. McClary. 1994. Azuki Bean: Botany, Production and Uses. CAB International, Oxon, UK.Google Scholar
  17. Maréchal, R., J. M. Mascherpa, and F. Stainier. 1978. Etude taxonomique d’un groupe complexe d’espèces des genres Phaseolus et Vigna (Papilionaceae) sur la base de données morphologiques et polliniques, traitées par l’analyse informatique. Boissiera 28:1–273.Google Scholar
  18. Matsumoto, T. 1979. Mung bean. Pages 162–163 in Torihama Mound—Investigation 1. On the Ruins in Shallow Water Site at Early Jomon Period. Education Committee of Fukui City, (in Japanese)Google Scholar
  19. — 1994. On the beans from Torihama Mound and Kuwagatashimo site. Prehistoric and Archaeological Research of the Tsukuba University 5:93–97. (in Japanese)Google Scholar
  20. Mimura, M., K. Yasuda, and H. Yamaguchi. 2000. RAPD variation in wild, weedy and cultivated azuki beans in Asia. Genetic Resources and Crop Evolution 47:603–610.CrossRefGoogle Scholar
  21. Nakamura, I., N. Kameya, Y. Kato, S. Yamanaka, H. Jomori, and Y-I. Sato. 1997. A proposal for identifying the short ID sequence which addresses the plastid subtype of higher plants. Breeding Science 47:385–388.Google Scholar
  22. Nicholas, K. B., and H. B. Nicholas, Jr. 1997. GeneDoc: A tool for editing and annotating multiple sequence alignments."ketch-up/genedoc. shtmlGoogle Scholar
  23. Ohashi, H. 1980. Systematic position of ‘Azuki’ (Vigna angularis (Willd.) Ohwi et Ohashi). Pages 73–76 in Nippon Ikushu Gakkai, ed., Ikushugaku Saikin no Shinpo Vol. 21, Keigaku Shuppan Co., Tokyo, (in Japanese)Google Scholar
  24. Rollo, F., F. M. Venanzi, and A. Amici. 1994. DNA and RNA from ancient plant seeds. Pages 218–236 in B. Herrmann and S. Hummel, eds., Ancient DNA, Springer-Verlag, New York.Google Scholar
  25. Saitou, N., and M. Nei. 1987. The neighbor-joining method: A new method for reconstructing phylogenetic trees. Molecular Biology and Evolution 4: 406–425.PubMedGoogle Scholar
  26. Sato, Y., Y. Tsubakisaka, M. Yoshizaki, and J. Okuda. 2000. Studies on cereal seeds discovered in a medicinal container of the Yakushi Nyorai statue of the Suo-Kokubunji temple. Yakushigaku Zasshi 35:128–134. (in Japanese with English summary)Google Scholar
  27. Sawa, M. 1983. Study on the breeding of azuki bean (V. angularis) by interspecific crossing. Michurin Biological Research 18:3–26. (in Japanese)Google Scholar
  28. Siriwardhane, D., Y. Egawa, and N. Tomooka. 1991. Cross-compatibility of cultivated adzuki bean (Vigna angularis) and rice bean (V. umbellata) with their wild relatives. Plant Breeding 107: 320–325.CrossRefGoogle Scholar
  29. Smartt, J. 1990. Grain Legumes. Cambridge University Press, New Yoke.CrossRefGoogle Scholar
  30. Swofford, D. L. 2001. PAUP: Phylogenetic analysis using parsimony, version 4.0b 10. Sinavuer Associates, Inc. Publishers. MA.Google Scholar
  31. Taberlet, P., L. Gielly, G. Pautou, and J. Bouvet. 1991. Universal primers for amplification of three non-coding regions of chloroplast DNA. Plant Molecular Biology 17:1105–1109.PubMedCrossRefGoogle Scholar
  32. Tateishi, Y. 1984. Contribution to the genus Vigna (Leguminosae) in Taiwan 1. Scientific Report of Tohoku University 4th series (Biology) 38:335–350.Google Scholar
  33. Tateishi, Y. 1996. Systematics of the species of Vigna subgenus Ceralotropis. Pages 9–24 in JIRCAS Working Report No. 2: Mungbean Germplasm: Collection, Evaluation and Utilization for Breeding Program. JIRCAS.Google Scholar
  34. —, and H. Ohashi. 1990. Systematics of the azuki bean group in the genus Vigna. Pages 189–199 in K. Fujii, K. et al., eds., Bruchids and Legumes: Economic, Ecology and Coevolution. Klewer Academic Publishers, Netherlands.Google Scholar
  35. Umemoto, S., and T. Moriwaki. 1983. Identification of leguminous seeds in Jomon period—Mung bean group excavated from Torihama ruins. Pages 42-46 in Torihama Ruin—Investigation 3. On the Wet Lowland during the Late Early Jomon period. Fukui Education Committee and Prefectural Wakasa History and Folk Museum, (in Japanese)Google Scholar
  36. Xu, D. H., J. Abe, M. Sakai, A. Kanazawa, and Y. Shimamoto. 2000. Sequence variation of non-coding regions of chloroplast DNA of soybean and related wild species and its implications for the evolution of different chloroplast haplotypes. Theoretical and Applied Genetics 101:724–732.CrossRefGoogle Scholar
  37. Yamaguchi, H. 1989. Weed azuki bean, an overlooked representative. Bulletin of the University of Osaka Prefecture, Series B41:1–7.Google Scholar
  38. — 1992. Wild and weed azuki beans in Japan. Economic Botany 46:384–394.CrossRefGoogle Scholar
  39. —, and K. Kosuge. 1991. Evaluation of wild azuki beans (Vigna angularis s. lat.). 2. SDS-page profiles in wild, weed and domesticated forms of azuki bean and its related wild species. Japanese Journal of Breeding 41, (Supplement 1):164–165. (in Japanese).Google Scholar
  40. —, and Y. Nikuma. 1996. Biometrical analysis on the classification of weed, wild and cultivated azuki beans. Weed Res. (Japan) 41:55–62.Google Scholar
  41. Yasuda, K., and H. Yamaguchi. 1996. Phylogenetic analysis of the subgenus Ceratotropis (genus Vigna) and an assumption of progenitor of azuki bean using isozyme variation. Breeding Science 46:337–347.Google Scholar
  42. —. 1998. Life history of wild and weed azuki beans under different weeding conditions. Journal of Weed Science and Technology 43: 114–121. (in Japanese with English summary)Google Scholar
  43. Yoshizaki, M. 1995. Appearance of the cultivated plants in ancient Japan. Archaeology Quarterly 50: 18–24. (in Japanese)Google Scholar
  44. — 1997. Jomon agriculture: Retrieval evidence. The Quaternary Research 36:343–346. (in Japanese with English summary)CrossRefGoogle Scholar
  45. —, and Y. Tsubakizaka. 1991. Plant remains. Pages 101–121 in Excavation Report of Ohkawa Site in 1990, Yoichi Educational Committee, Hokkaido.Google Scholar

Copyright information

© The New York Botanical Garden 2004

Authors and Affiliations

  • Azusa Yano
    • 1
  • Kentaro Yasuda
    • 2
    • 3
  • Hirofumi Yamaguchi
    • 2
  1. 1.Ancient DNA LaboratoryInternational Research Center for Japanese StudiesNishikyo, KyotoJapan
  2. 2.Conservation Ecology, Graduate School of Agriculture and Biological SciencesOsaka Prefecture UniversitySakai, OsakaJapan
  3. 3.National Research Center for Kyushu Okinawa Region (KONARC)Chikugo, FukuokaJapan

Personalised recommendations